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Fronto-Par. Windows Matched at Integer Disparities 

Left image Disparity map 3D reconstruction 

Remedy: 
Match slanted support windows at 

continuous sub-pixel disparities 
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Left image Disparity map 3D reconstruction 



Our Slanted Windows 

Left image Disparity map 3D reconstruction 

The challenge:  
“How can we find the correct slanted 

plane at each pixel?” 
(infinite number of canditate planes) 
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• Each additional label adds extra computational 
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• Algorithm fails if correct plane not part of label 

space 



Previous Work 

 Sub-pixel precision and slanted windows via 

extending label space: 

• Include fronto-parallel planes at sub-pixel 

disparities 

• Include slanted planes (plane sweeping) 

 Problems 

• Each additional label adds extra computational 

complexity 

• Algorithm fails if correct plane not part of label 

space 

Our algorithm: 
• Continuous optimization over the 

set of all planes 
• No quantization needed 
• Based on PatchMatch [Barnes et 

al., SIGGRAPH09] 



Our Algorithm 



Basic Idea 
 Relatively large regions of pixels can be modeled by 

approximately the same plane. 

 Initialize each pixel with a random plane 

 At least one pixel of a region should carry a plane 

close to correct one: 

• Many guesses (one per pixel) 

 A single good guess is enough - it will be propagated 

to neighboring pixels 

Left image – Sawtooth 

(Middlebury) 

Image consists of 3 planes - 

~80.000 guesses for yellow plane 
Ground truth disparities 
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• Odd iterations: 

Reverse order 

 We run 3 iterations 

Start 

End 
Left Disparity Map Right Disparity Map 

Run the following pipeline for each pixel p: 
1. Spatial propagation 
2. View propagation 
3. Temporal propagation 
4. Plane refinement 



Spatial Propagation 
 Look at the current pixel p’s spatial neighbors. 

 Check if assigning p to a spatial neighbor's plane leads 

to lower aggregated costs. 

Left image – 

Reindeer 

(Middlebury) Left and right disparity maps (intermediate step of iteration 1) 



View Propagation 
 Find all pixels that have p as their matching point 

according to their current disparity. 

 Check if plane of a matching point improves costs. 

Left image – 

Reindeer 

(Middlebury) Left and right disparity maps (intermediate step of iteration 1) 



Temporal Propagation 

 Applicable if operating on video sequences 

 Find planes at p’s coordinates in the previous and 

consecutive frames. 

 Check if planes improve current costs. 



Plane Refinement 

 Take p‘s current plane fp. 
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Plane Refinement 

 Take p‘s current plane fp. 
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No improvement; 
Dismiss f*p 
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Plane Refinement 
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PatchMatch Stereo in Action 



Global Methods 

 Our slanted windows can be used as a data term for 

global methods (see paper). 



Results 



Evaluation 

 We implement two competitors in our 

PatchMatch framework. 

• Competitor 1: 

Fronto-parallel windows matched at integer 

disparities 

• Competitor 2: 

Fronto-parallel windows matched at sub-pixel 

disparities 

 Testbed: 

• Middlebury 



Error threshold 1 (Middlebury default) 

Ranking in the Middlebury online table 



Error threshold 1 (Middlebury default) 

Ranking in the Middlebury online table 

Left image – Teddy set 

(Middlebury) 

Disparity map Error map (black = wrong) 

• Fronto-parallel windows at integer disparities (Comp. 1) 
• Rank 32 of 110 Middlebury submissions 



Error threshold 1 (Middlebury default) 

Ranking in the Middlebury online table 

Left image – Teddy set 

(Middlebury) 

Disparity map Error map (black = wrong) 

• Fronto-parallel windows at sub-pixel disp. (Comp. 2) 
• Rank 22 of 110 Middlebury submissions 
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Error threshold 1 (Middlebury default) 

Ranking in the Middlebury online table 

Left image – Teddy set 

(Middlebury) 

Disparity map Error map (black = wrong) 

• Our slanted windows 
• Rank 11 of 110 Middlebury submissions 
• Best-performing local method 

• Rank #1 on Teddy in non-occluded 
regions 



Ranking in the Middlebury online table 

Disparity map Error map (black = wrong) 

Error threshold 0.5 (Sub-Pixel Evaluation) 

• Our slanted windows 
• Rank 2 of 110 Middlebury submissions 

Left image – Teddy set 

(Middlebury) 



Ranking in the Middlebury online table 

Disparity map Error map (black = wrong) 

Error threshold 0.5 (Sub-Pixel Evaluation) 

• First rank on almost all error measurements on the 
complex Teddy and Cones sets 

Left image – Teddy set 

(Middlebury) 



Result Video 



Computational Speed 

 Approximately 1 minute per Middlebury pair (CPU) 

 Runtime independent of the number of labels (disparities) 

• Well suited for optical flow computation (future work) 

 Low memory requirements: 

• We only need to hold the current matching costs and a plane at 

each pixel in memory 

• => We can do high-resolution stereo 



Image of Graz (2048x2048 pixels) 
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Image of Graz (2048x2048 pixels) 

Crop of left image Crop of right image Left disparity map 

(before left/right check) 



Playroom Set (image courtesy Daniel Scharstein) 
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Playroom Set (image courtesy Daniel Scharstein) 



Conclusions 
 Local stereo algorithm uses slanted support windows 

 An ideal algorithm to find the slanted windows is 

PatchMatch 

 High quality results on complex images and videos at 

reasonable runtimes 

Future Work 
 Optical flow 

 Improve computational speed (GPU implementation –

real time) 

 


