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Abstract

We tackle the problem of jointly increasing the spatial
resolution and apparent measurement accuracy of an input
low-resolution, noisy, and perhaps heavily quantized depth
map. In stark contrast to earlier work, we make no use
of ancillary data like a color image at the target resolu-
tion, multiple aligned depth maps, or a database of high-
resolution depth exemplars. Instead, we proceed by identi-
fying and merging patch correspondences within the input
depth map itself, exploiting patchwise scene self-similarity
across depth such as repetition of geometric primitives or
object symmetry. While the notion of ‘single-image’ super
resolution has successfully been applied in the context of
color and intensity images, we are to our knowledge the
first to present a tailored analogue for depth images. Rather
than reason in terms of patches of 2D pixels as others have
before us, our key contribution is to proceed by reason-
ing in terms of patches of 3D points, with matched patch
pairs related by a respective 6 DoF rigid body motion in
3D. In support of obtaining a dense correspondence field in
reasonable time, we introduce a new 3D variant of Patch-
Match. A third contribution is a simple, yet effective patch
upscaling and merging technique, which predicts sharp ob-
ject boundaries at the target resolution. We show that our
results are highly competitive with those of alternative tech-
niques leveraging even a color image at the target resolu-
tion or a database of high-resolution depth exemplars.

1. Introduction

With the advent of inexpensive 3D cameras like the

Microsoft Kinect, depth measurements are becoming in-

creasingly available for low-cost applications. Acquisitions

made by such consumer 3D cameras, however, remain af-

flicted by less than ideal attributes. Random errors are a

∗Michael Hornáček is funded by Microsoft Research through its Euro-

pean Ph.D. scholarship programme.

Figure 1. Shaded mesh of nearest neighbor upscaling (top) of a

noiseless synthetic input depth map and the output of our algo-

rithm (bottom), both by a factor of 3. In our approach, fine details

such as the penguin’s eyes, beak, and the subtle polygons across

its body are mapped from corresponding patches at lesser depth,

and boundaries appear more natural.

common problem. Low spatial resolution is an issue partic-

ularly with time of flight (ToF) cameras, e.g., 200× 200 for

the PMD CamCube 2.0 or 176 × 144 for the SwissRanger

SR3000. In depth maps recovered using stereo techniques,

depth resolution decreases as a function of increasing depth

from the camera. Common avenues to jointly increasing

the spatial resolution and apparent measurement accuracy

of a depth map—a problem referred to as depth super res-

olution (SR)—involve leveraging ancillary data such as a

color or intensity image at the target resolution, multiple

aligned depth maps, or a database of high-resolution depth

exemplars (patches). Such ancillary data, however, is often

unavailable or difficult to obtain.

In this work, we consider the question of how far one

can push depth SR using no ancillary data, proceeding in-

stead by identifying and merging patch correspondences

from within the input depth map itself. Our observation

is that—even in the absense of object repetition of the sort

exemplified in Figure 1—real-world scenes tend to exhibit

patchwise ‘self-similarity’ such as repetition of geometric

primitives (e.g., planar surfaces, edges) or object symme-

try (consider a face, a vase). Man-made scenes or objects
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Figure 2. In the depth map (left), the three pairs of 2D patches

depicted are dissimilar with respect to depth values. In the cor-

responding point cloud (right), the analogous 3D patch pairs are

similar as point sets related by appropriate rigid body motions in

3D. The inlet shows part of the vase, contrast-stretched for greater

clarity; pixel noise is clearly visible.

are often ‘self-similar’ by design; consider, for instance, the

keys of a keyboard. It is primarily this observation that we

exploit in this paper, coupled with the fact that under per-

spective projection, an object patch at lesser depth with re-

spect to the camera is acquired with a higher spatial reso-

lution than a corresponding patch situated at greater depth.

The key contribution of our work is to proceed not by rea-

soning in terms of patches of 2D pixels, but rather in terms

of patches of 3D points. It is reasoning in this manner that

allows us to exploit scene self-similarity across depth. In

addition, we introduce a new 3D variant of PatchMatch to

obtain a dense correspondence field in reasonable time and

a simple, yet effective patch upscaling and merging tech-

nique to generate the output SR depth map.

The notion of ‘single-image’ SR has already successfully

been applied in the context of color and intensity images in

the work of Glasner et al. [8]. Their guiding observation

is that within the same image there is often a large across-

scale redundancy at the 2D pixel patch level; for instance,

an image of a leafy forest is likely to contain a large num-

ber of small patches with various configurations of greens

and browns that happen to recur across scales of the image.

Their strategy is to search for corresponding 5 × 5 pixel

patches across a discrete cascade of downscaled copies of

the input image and to exploit sub-pixel shifts between cor-

respondences. An SR framework reasoning in terms of

small n× n pixel patches, however, faces serious problems

in the context of depth SR. Figure 2 illustrates three funda-

mental problems of matching 3D points using n × n pixel

patches: patch pairs (i) are situated at different depths or

(ii) are subject to projective distortions owing to perspec-

tive projection, or (iii) they straddle object boundaries. The

problem of projective distortions calls for a small patch size,

which renders matching particularly sensitive to noise. We

overcome these problems by reasoning in terms of 3D point

patches, which we define as the respective inliers—from

among the 3D points of the input depth map—within a fixed

radius r of a center point and which we match with respect

to 3D point similarity over 6 DoF rigid body motions in 3D.

1.1. Related Work

A number of surveys of image SR techniques are avail-

able elsewhere, e.g., van Ouwerkerk [19] or Tian and

Ma [18]. Glasner et al. [8], Yang et al. [20], and Free-

man and Liu [7] are image SR techniques against which

we compare our algorithm in Section 3, by treating input

depth maps as intensity images. Freeman and Liu et al. and

Yang et al. both rely on an external patch database.

Previous work on depth SR can broadly be categorized

into methods that (i) use a guiding color or intensity im-

age at the target resolution, (ii) merge information contained

in multiple aligned depth maps, or (iii) call on an external

database of high-resolution depth exemplars. We devote the

remainder of this section to a discussion of representative or

seminal techniques from the depth SR literature.

Image at Target Resolution. The most common depth

SR strategy involves using an ancillary color or intensity

image at the target resolution to guide the reconstruction

of the SR depth map. The underlying assumption is that

changes in depth are colocated with edges in the guiding

image. Yang et al. [21] apply joint bilateral upscaling on a

cost volume constructed from the low resolution input depth

map, followed by Kopf et al. [11] in a more general frame-

work. Diebel and Thrun [5] propose an MRF-based ap-

proach with a pairwise smoothness term whose contribution

is weighted according to the edges in the high-resolution

color image. Park et al. [13] take this idea further and use

a non-local, highly-connected smoothness term that better

preserves thin structures in the SR output.

Multiple Depth Maps. The Lidarboost approach of

Schuon et al. [17] combines several depth maps acquired

from slightly different viewpoints. The Kinectfusion ap-

proach of Izadi et al. [10] produces outstanding results by

fusing a sequence of depth maps generated by a tracked

Kinect camera into a single 3D representation in real-time.

Database of Depth Exemplars. Most closely akin to ours

is the work of Mac Aodha et al. [12]. They propose to

assemble the SR depth map from a collection of depth

patches. Our approach likewise carries out depth SR by

example, but with significant differences. One major dif-

ference is that we use patches only from within the input

depth map itself, whereas Mac Aodha et al. use an exter-

nal database of 5.2 million high-resolution synthetic, noise-

free patches. Another difference is that they carry out their

matching in image space over 3 × 3 pixel patches, while

ours can have arbitrary size depending on the scale, den-

sity, and relative depth of point features one aims to capture.
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Figure 3. The rigid body motion g relating the 3D point patches

Sx, S
′
x ⊂ R

3. The point Px ∈ R
3 is the pre-image of the pixel x

of the input depth map. Note that the center point P′x = g(Px)
of the closer patch is by design not required to be one of the 3D

points of the input depth map, hence P′x �∈ S′x in general.

Accordingly, their approach is subject to the problems dis-

cussed in Section 1 that our reasoning in terms of 3D point

patches overcomes. Note that enlarging the patches in their

database would lead to an explosion of its size.

2. Algorithm
Owing to the perspective projection that underlies image

formation, object patches situated at a lesser depth with re-

spect to the camera are imaged with a higher spatial resolu-

tion (i.e., a greater point density) than corresponding object

patches at greater depth. Our depth SR algorithm consists

of two steps: (i) find, for each patch in the input depth map,

a corresponding patch at lesser or equal depth with respect

to the camera, and (ii) use the dense correspondence field to

generate the SR output. We begin, in Section 2.1, by pre-

senting our notion of ‘3D point patch’ and the matching cost

we propose to minimize. Next, we detail the first step of our

algorithm in Section 2.2, and the second in Section 2.3.

2.1. 3D Point Patches

Let g = (R, t) ∈ SE(3) denote a 6 DoF rigid body mo-

tion in 3D, where R ∈ SO(3) and t ∈ R
3. Let x = (x, y)�

be a pixel of the input depth map. The goal of the dense

correspondence search algorithm in Section 2.2 is to find an

optimal rigid body motion g for each pixel x, mapping the

patch corresponding to x to a valid matching patch at lesser

or equal depth with respect to the camera. We shall under-

stand the patch corresponding to x—the further1 patch, for

brevity—to be the set Sx ⊂ R
3 of 3D points within a ra-

dius r of the pre-image Px = Zx · K−1(x�, 1)� ∈ R
3 of x,

where Zx is the depth encoded at x in the input depth map

and K is the 3 × 3 camera calibration matrix (cf. Hartley

and Zisserman [9]). We carry out radius queries using a kd-

tree. The 3D points of the corresponding closer patch S′x
1We acknowledge that this is something of an abuse of terminology,

since two points can be situated at equal depth with respect to the camera

but be at different distances from it. Notwithstanding, it is in this sense

that we shall mean ‘closer’ and ‘further’ in this paper.

are those within the same radius r of the point P′x = g(Px).
An illustration of these notions is provided in Figure 3.

Matching Cost. A common strategy for evaluating the

similarity of two point sets is to compute the sum of squared

differences (SSD) over each point in one point set with

respect to its nearest neighbor (NN) point in the other

(cf. Rusinkiewicz and Levoy [14]). We proceed in a sim-

ilar manner, but normalize the result and allow for comput-

ing SSD in both directions in order to potentially obtain a

stronger similarity measure, noting that we might be com-

paring point sets with significantly different point densities

owing to relative differences in patch depth. Let NNS(P)
denote the function that returns the nearest neighbor to the

point P in the set S. The function cb(x; g) evaluates nor-

malized SSD over the points of the further patch Sx sub-

ject to each point’s respective nearest neighbor among the

‘backward’-transformed points g−1(S′x) of the closer patch:

cb(x; g) =
∑
P∈Sx

∥∥P− NNg−1(S′x)(P)
∥∥2
2
/|Sx|. (1)

Analogously, the function cf (x; g) evaluates normalized

SSD over the points of the closer patch S′x subject to

their respective nearest neighbors among the ‘forward’-

transformed points g(Sx) of the further patch:

cf (x; g) =
∑

P′∈S′x

∥∥P′ − NNg(Sx)
(P′)

∥∥2
2
/|S′x|. (2)

For g to be deemed valid at x, we require that the depth of

the sphere center point of the matched patch be less than or

equal to that of the pre-image of x. Moreover, we require

that their relative distance be at least r in order to avoid

minimizing cost trivially by matching to oneself, and that

|S′x| ≥ |Sx| ≥ 3 to benefit from greater point density or

from sub-pixel point shifts at equal density, and for reasons

discussed below. Given a pixel x and a rigid body motion g,

we compute the matching cost c(x; g) according to

c(x; g) =

{
α · cb(x; g) + α′ · cf (x; g) if valid

∞ otherwise
,

(3)

where α ∈ [0, 1] and α′ = 1− α.

2.2. Dense Correspondence Search

We introduce a new 3D variant of the PatchMatch algo-

rithm (cf. Barnes et al. [1]) in the aim of assigning to each

pixel x of the input depth map a 6 DoF rigid body motion

in 3D, mapping Sx to a valid matching patch S′x at equal

or lesser depth with respect to the camera. PatchMatch was

first introduced as a method for obtaining dense approxi-

mate nearest neighbor fields between pairs of n × n pixel

patches in 2D, assigning to each pixel x in an image A
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Figure 4. A filled variant of the disparity map of the Middlebury

Cones data set (left) as input and a visualization of projected 3D

displacements of the output of our dense correspondence search

using conventional optical flow coloring, both overlayed sparsely

with arrows for greater clarity (right). Note that cone tips map to

one another and that the flow field is spatially coherent.

a displacement vector mapping the patch centered at x to

a matching patch in an image B with the objective of re-

constructing one image in terms of patches from the other.

Although PatchMatch has since been generalized and ap-

plied to a variety of other problems (cf. Barnes et al. [2]

or Besse et al. [3]), a common thread between variants of

PatchMatch—in which ours is no exception—is a random

(or semi-random) initialization step followed by i iterations

of propagation and refinement. We explain each step in

greater detail in the remainder of this section. An exam-

ple of a projected displacement field obtained using our 3D

variant of PatchMatch is shown in Figure 4.

Initialization. In contrast to PatchMatch variants that

carry out initialization using altogether random states, we

adopt a semi-random initialization strategy. In our experi-

ments, we found this led to faster convergence when deal-

ing with our high-dimensional state space. Specifically,

for each pixel x we randomly select another pixel x′ of

the input depth map such that the depth of Px′ is less

than or equal to that of Px, giving us a translation vec-

tor (3 DoF). We then compute the rotation minimizing arc

length between the patch normal vector at Px and that at

Px′ (2 DoF), and choose a random angular perturbation

around the normal of Px (1 DoF). We pack these elements

into a rigid body motion. A normal vector for each Px is

precomputed via RANSAC plane fitting over the 3D points

in Sx (and is the reason why we require that |Sx| ≥ 3 in

Section 2.1), which is made to point towards the camera.

Propagation. In keeping with classical PatchMatch

(cf. Barnes et al. [1]), we traverse the pixels x of our in-

put depth map in scanline order—upper left to lower right

for even iterations, lower right to upper left for odd—and

adopt the rigid body motion assigned to a neighboring pixel

if doing so yields an equal or lower cost. Note that as a

consequence, we propagate over pixels for which |Sx| < 3,

which we treat as so-called flying pixels, since such pixels

are always assigned infinite cost by c(x; g) in (3).

Refinement. Immediately following propagation at a

given pixel x, we independently carry out k iterations of

additional initialization and of perturbation of the transla-

tional and rotational components of gx, adopting the ini-

tialization or perturbation if doing so yields an equal or

lower cost. Translational perturbation (3 DoF) consists of

checking whether hopping from P′x to one of its k-NN

points Px′—which we obtain by again making use of a kd-

tree—yields an equal or lower cost. Rotational perturbation,

which we carry out in a range that decreases with every it-

eration k, consists of random rotation around the normal at

Px (1 DoF) and of random perturbation of the remaining

two degrees of freedom of the rotation. We carry out and

evaluate all three types of perturbations independently.

2.3. Patch Upscaling and Merging

Having assigned a motion gx ∈ SE(3) to each pixel x of

the input depth map, we generate an SR depth map by merg-

ing interpolated depth values of the ‘backward’-transformed

points g−1
x (S′x) of each valid matched patch. We begin,

for each x, by (i) determining—with the help of contour

polygonalization—the spatial extent of Sx at the target res-

olution, giving an ‘overlay mask’ over which we then (ii)

generate an ‘overlay patch’ by interpolating depth values

from the points g−1
x (S′x). Next, we (iii) populate the SR

depth map by merging the interpolated depth values of over-

lapping overlay patches, with the influence of each valid

overlay patch weighted as a function of patch similarity. Fi-

nally, we (iv) clean the SR depth map in a postprocessing

step, removing small holes that might have arisen at object

boundaries as a consequence of polygonalization.

Overlay Masks. The 2D pixels x of the input depth map

to which the 3D points of Sx project define the spatial ex-

tent of Sx at the input resolution (cf. Figure 5). It is only

these pixels, at the input resolution, that the ‘backward’-

transformed points g−1
x (S′x) of the matched patch are al-

lowed to influence, since it is over these pixels that we com-

pute the matching cost. Upscaling the mask by the SR fac-

tor using NN interpolation gives a mask at the target res-

olution, but introduces disturbing jagged edges. Accord-

ingly, we carry out a polygon approximation (cf. Douglas

and Peucker [6]) of this NN upscaled mask, constrained

such that approximated contours be at a distance of at most

the SR factor—corresponding to a single pixel at the input

resolution—from the NN upscaled contours. We ignore re-

covered polygonalized contours whose area is less than or

equal to the square of the SR factor, thereby removing flying

pixels. This polygonalized mask—to which we refer as the

overlay mask of x—consists of all SR pixels x̂ that fall into

one of the remaining polygonalized contours but fall into

no contour that is nested inside another, in order to handle

holes like in the lamp in Figure 5.
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Figure 5. Overlay Masks. Left: A patch of points Sx in the input point cloud and its corresponding pixel mask in the raster of the input

depth map (depicted in yellow). Center: NN upscaling of the depth map and mask by a factor of 2. Right: Corresponding polygon

approximation of the NN upscaled mask, which we term the ‘overlay mask’ corresponding to x. In the merging step, it is only the SR

pixels x̂ of the overlay mask of x that the ‘backward’-transformed points g−1
x (S′x) of the matched patch are allowed to influence.

Overlay Patches. We interpolate, for the SR pixels x̂ of

the overlay mask corresponding to x, depth values from

the ‘backward’-transformed points g−1
x (S′x). Since points

transformed according to a rigid body motion in 3D are not

guaranteed to project to a regular grid in general, we inter-

polate over the depth values of these transformed points us-

ing barycentric coordinates on a Delaunay triangulation of

their projections to image space (cf. Sambridge et al. [15]).

Merging. The SR depth map is computed by working

out, for each SR pixel x̂, a weighted average of the cor-

responding interpolated depth values from the overlapping

overlay patches. The weight ωx of the interpolated depth

values of the overlay patch assigned to x is given by

exp(−γ · cb(x; gx)), where γ ∈ R
+ controls the falloff to

0. If cb(x; gx) > β, β ∈ R
+, we instead use the over-

lay patch at x given by the identity motion, ensuring that

patches for which no good match was found do not undergo

heavy degradation. We check against cb(x; gx) from (1)

since it gives an indication of how satisfied the input points

are with the match without penalizing the addition of new

detail from S′x. As in Section 2.2, if |Sx| < 3 then we

consider x a flying pixel, and set ωx = 0.

Postprocessing. Since our polygon approximation guar-

antees only that the outlines of the polygon be within the

SR factor of the outlines of the NN upscaled mask, it is

possible that no overlay mask cover a given SR pixel. Such

holes can be filled using morphological dilation carried out

iteratively, with the dilation affecting only pixels identified

as holes. Another possible cause for holes is if pixels within

an overlay mask could not be interpolated owing to the spa-

tial distribution of the projected points. In that event, we

dilate within the overlay mask with highest weight, again

only over pixels identified as holes. Note that no postpro-

cessing was performed in the output in Figure 1.

3. Evaluation
We evaluate our method using depth data from stereo,

ToF, laser scans and structured light. We carry out a quan-

titative evaluation in Section 3.1, and provide a qualitative

evaluation in the section thereafter. Unless otherwise stated,

we performed no preprocessing. In all our experiments, we

carried out 5 iterations of PatchMatch, with k = 3, and

set α = 0.5. Setting appropriate parameters r, β, and γ is

largely intuitive upon visualization of the input point cloud,

and depends on the scale, density, and relative depth of point

features one aims to capture. In Section 3.1, all algorithm

parameters were kept identical across Middlebury and laser

scan tests, respectively. We give additional information on

parameters and show additional results on our website.

3.1. Quantitative Evaluation

Following the example of Mac Aodha et al. [12] we pro-

vide a quantitative evaluation of our technique on Cones,

Teddy, Tsukuba and Venus of the Middlebury stereo data

set (cf. Scharstein and Szeliski [16]). For Middlebury tests,

we ran our algorithm on filled ground truth data—the same

used in Mac Aodha et al.—downscaled by NN interpo-

lation by a factor of 2 and 4 and subsequently super re-

solved by the same factor, respectively, which we compare

to ground truth. Table 1 shows root mean squared error

(RMSE) scores. Among depth SR methods that leverage a

color or intensity image at the target resolution, we compare

against Diebel and Thrun [5] and Yang et al. [21]; among

techniques that make use of an external database we com-

pare against Mac Aodha et al., and against Yang et al. [20]

and Freeman and Liu [7] from the image SR literature. We

also compare against the approach of Glasner et al. [8]. We

compare against NN upscaling to provide a rough baseline,

although it introduces jagged edges and does nothing to im-

prove the apparent depth measurement accuracy. Table 1

also gives RMSE scores for three depth maps obtained from

laser scans detailed in Mac Aodha et al., which we down-

scaled and subsequently super resolved by a factor of 4. For

the laser scans we compare to the original resolution since

ground truth data was not available. In Table 2, we pro-

vide percent error scores—giving the percentage of pixels

for which the absolute difference in disparity exceeds 1—

for Middlebury. All RMSE and percent error scores were

computed on 8 bit disparity maps . The data sets—with the
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exception of results on the algorithm of Glasner et al. [8]—

and the code used in carrying out the quantitative evaluation

are from Mac Aodha et al. [12] and were generously pro-

vided by the authors.2

Although popular in the depth SR literature, RMSE

scores over depth or disparity maps are dominated by mis-

assignments at the boundaries of objects separated by large

depth differences; given two data sets with equal percent

error, a data set where boundaries are gently blurred will

have lower RMSE than one with boundaries that are sharp.

Even so, our RMSE scores fare highly competitively with

those of alternative techniques. In percent error, we are the

top performer among example-based methods, and on a few

occasions outperform the image-guided techniques.

3.2. Qualitative Evaluation

In Figure 6 we show results on a data set of two similar

egg cartons situated at different depths, obtained using the

stereo algorithm of Bleyer et al. [4]. Our result is visually

superior to that of our competitors, and is the only one to

succeed in removing noise. Note the patch artefacts for Mac

Aodha et al. in the zoom. In Figure 7, we consider a noisy

ToF data set from [12]. We see that although our depth map

appears pleasing, it in fact remains gently noisy if shaded

as a mesh, owing to the great deal of noise in the input.

However, if we apply the same bilateral filtering as Mac

Aodha et al. [12], our result when shaded—although not as

smooth over the vase—preserves edges better (e.g., at the

foot) without introducing square patch artefacts. Note that

Glasner et al. do not succeed in removing visible noise in

their depth map, and introduce halo artefacts at the bound-

aries. Figure 8 provides a comparison over the noiseless,

yet quantized Cones data set. Note that although Glasner et
al. [8] perform well in RMSE, their method produces poor

object boundaries.

4. Conclusion
Inspired by the work of Glasner et al. [8] on single-

image super resolution for color and intensity images, we

presented a tailored depth super resolution algorithm that

makes use of only the information contained in the input

depth map. We introduced a new 3D variant of PatchMatch

for recovering a dense matching between pairs of closer-

further corresponding 3D point patches related by 6 DoF

rigid body motions in 3D and presented a technique for up-

scaling and merging matched patches that predicts sharp ob-

ject boundaries at the target resolution. In our evaluation,

we showed our results to be highly competitive with meth-

ods leveraging ancillary data.

2The RMSE scores published in Mac Aodha et al. [12] were

subject to a subtle image resizing issue. Details and updated

numbers are available at http://visual.cs.ucl.ac.uk/pubs/
depthSuperRes/supp/index.html.
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2x 4x 4x

Cones Teddy Tsukuba Venus Cones Teddy Tsukuba Venus Scan 21 Scan 30 Scan 42

Nearest Neighbor 1.094 0.815 0.612 0.268 1.531 1.129 0.833 0.368 0.018 0.016 0.040

Diebel and Thrun [5] 0.740 0.527 0.401 0.170 1.141 0.801 0.549 0.243 N/A N/A N/A

Yang et al. [21] 0.756 0.510 0.393 0.167 0.993 0.690 0.514 0.216 N/A N/A N/A

Yang et al. [20] 2.027 1.420 0.705 0.992 2.214 1.572 0.840 1.012 0.030 0.035 0.054

Freeman and Liu [7] 1.447 0.969 0.617 0.332 1.536 1.110 0.869 0.367 0.019 0.017 0.075

Glasner et al. [8] 0.867 0.596 0.482 0.209 1.483 1.065 0.832 0.394 1.851 1.865 1.764

Mac Aodha et al. [12] 1.127 0.825 0.601 0.276 1.504 1.026 0.833 0.337 0.017 0.017 0.045

Our Method 0.994 0.791 0.580 0.257 1.399 1.196 0.727 0.450 0.021 0.018 0.030

Table 1. Root mean squared error (RMSE) scores. Yang et al. [20] and Freeman and Liu [7] are image SR methods and Mac Aodha et
al. [12] a depth SR method, all of which require an external database. Diebel and Thrun [5] and Yang et al. [21] are depth SR methods that

use an image at the target resolution. Glasner et al. [8] is an image SR technique that uses patches from within the input image. For most

data sets, our method is competitive with the top performer. Laser scan tests on the image-guided techniques were not possible for want of

images at the target resolution. Best score is indicated in bold for the example-based methods, which we consider our main competitors.

2x 4x

Cones Teddy Tsukuba Venus Cones Teddy Tsukuba Venus

Nearest Neighbor 1.713 1.548 1.240 0.328 3.121 3.358 2.197 0.609

Diebel and Thrun [5] 3.800 2.786 2.745 0.574 7.452 6.865 5.118 1.236

Yang et al. [21] 2.346 1.918 1.161 0.250 4.582 4.079 2.565 0.421

Yang et al. [20] 61.617 54.194 5.566 46.985 63.742 55.080 7.649 47.053

Freeman and Liu [7] 6.266 4.660 3.240 0.790 15.077 12.122 10.030 3.348

Glasner et al. [8] 4.697 3.137 3.234 0.940 8.790 6.806 6.454 1.770

Mac Aodha et al. [12] 2.935 2.311 2.235 0.536 6.541 5.309 4.780 0.856
Our Method 2.018 1.862 1.644 0.377 3.271 4.234 2.932 3.245

Table 2. Percent error scores. Our method is the top performer among example-based methods and on a few occasions outperforms Diebel

and Thrun [5] and Yang et al. [21]. Results provided for Yang et al. [20] suffer from incorrect absolute intensities.

(a) Color image (b) Nearest neighbor (32 bit) (c) Our result (32 bit)

(d) Glasner et al. [8] (8 bit) (e) Mac Aodha et al. [12] (preprocessed, 32 bit)

(b) (c)

(d) (e)

(f) Zooms

Figure 6. 2x nearest neighbor upscaling (b) and SR (c-e) on a stereo data set of two similar egg cartons obtained using the method of

Bleyer et al. [4]. Note that (e) was preprocessed using a bilateral filter (window size 5, spatial deviation 0.5, range deviation 0.001).

11271127112711291129



(a) Nearest neighbor (b) Our result (c) Mac Aodha et al.
[12] (preprocessed)

(d) Glasner et al. [8] (e) Yang et al. [20] (f) Freeman and Liu [7]

(g) Nearest neighbor (pre-

processed, 32 bit)

(h) Mac Aodha et al. [12] (pre-

processed, 32 bit)

(i) Our result (preprocessed,

32 bit)

(j) Our result (no preprocessing,

32 bit)

(h)

(i)

(k) Zooms

Figure 7. Above, we provide zooms on a region of interest of the noisy PMD CamCube 2.0 ToF data set shown in Figure 2 for 4x nearest

neighbor upscaling in (a) and 4x SR otherwise. A depth map zoom for Mac Aodha et al. was available only with bilateral preprocessing

(window size 5, spatial deviation 3, range deviation 0.1). Below, we show shaded meshes for the preprocessed result of Mac Aodha et
al. [12] and for our method with and without the same preprocessing ((h) is not aligned with the other meshes because we obtained the

rendering from the authors). Note that although we in (i) perform worse than (h) on the vase, we preserve fine detail better and do not

introduce square patch artefacts.

(a) Nearest neighbor (b) Our result (c) Glasner et al. [8] (d) Mac Aodha et al. [12]

(e) Nearest neighbor (32 bit) (f) Our result (32 bit) (g) Our result (8 bit) (h) Glasner et al. [8] (8 bit) (i) Mac Aodha et al. [12]

(8 bit)

Figure 8. Above, zooms on a region of interest of the noiseless, though quantized Middlebury Cones data set. 2x SR was carried out (in

our case, using the parameters from the quantitative evaluation) on the 2x nearest neighbor downscaling of the original, depicted in (a).

Our method produces the sharpest object boundaries. Below, the corresponding shaded meshes. We show our 8 bit quantized mesh in (g)

for comparison. Our method performs the best smoothing even after quantization (particularly over the cones), although it lightly smooths

away the nose for the parameters used, which were kept the same for all Middlebury tests. We provide additional results on our website.

[21] Q. Yang, R. Yang, J. Davis, and D. Nistér. Spatial-depth

super resolution for range images. In CVPR, 2007.
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