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Abstract

The high computational demands of state-of-the-art video coding standards such as H.264 pose
serious challenges on embedded processor architectures. Anatural way to tackle this problem is
the use of multi-processor systems. However, the efficient distribution of complex video coding
algorithms among multiple processing units (PUs) is a non-trivial task. In order to use the avail-
able processing resources efficiently, an equally balanceddistribution of the coding algorithm
onto the hardware units must be found. The system designer has to consider data-dependency
issues as well as inter-communication and synchronizationbetween the PUs. Furthermore, effi-
cient software design is necessary in order to satisfy the resource limitations in an embedded
environment, such as low computational power, small-sizedon-chip memories and low bus
bandwidth. A parallel video coding implementation for an embedded system must be able to
work under these resource restrictions.

Being able to predict the resource requirements of a parallel video coding application (VCA)
is therefore essential during the design of a video coding system (VCS) considering these strict
requirements on runtime performance and resource usage. This thesis contributes novel meth-
ods to support the complex design process of parallel VCS in an early phase of system design
when highly critical decisions on hardware and software aremade. The contributions of this
thesis can be summarised as follows. (i) We propose theData-Driven Profiling(DDP) method
for analysing and visualizing the runtime complexity of a VCS. This method maps traditional
runtime profilings onto the coding elements and functional blocks of a video coding algorithm.
It enables the system designer to relate runtime complexitywith the application levels where
parallelisation takes place and introduces means for analysing the workload distribution. (ii)
We demonstrate how to exploit DDPs for analysing complexityand deriving essential informa-
tion for parallel system design. Assumptions about the performance of a VCA on a parallel
architecture can be made, potential problems in work balancing identified and complexity vari-
ations in the functional blocks of a VCA’s video coding elements analysed. (iii) We introduce
the Partition Assessment Simulation (PAS) methodology forenabling the exploration of com-
plex parallel VCS designs. This methodology exploits the structural and functional similarities
of modern video coding algorithms for predicting a VCA’s runtime on a “virtual” architecture.
(iv) We implement a simulator for the PAS concept. By modelling and simulating an existing
multi-processor platform, the PAS methodology is verified.We demonstrate the flexibility of the
PAS to simulate complex parallel video coding platforms andto explore new parallel designs for
functional as well as data-parallel H.264 decoder partitioning methods. We believe that the con-
tributed techniques enable system designers to address thechallenges of parallel VCS design in
an intuitive and time-efficient way leading to application-tailored and cost-competitive VCS.
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Kurzfassung

Die hohen Anforderungen, die moderne Videokodierstandards an die Rechenleistung stellen,
können auf vielen Embedded-Architekturen nicht oder nur eingeschränkt gelöst werden. Der
Einsatz von Multi-Prozessorsystemen und die Aufteilung der Kodierung auf mehrere Prozes-
soren bieten hier eine elegante Lösung. Der Entwurf von parallelen Videokodiersystemen stellt
jedoch bei komplexen Algorithmen wie H.264 eine herausfordernde Aufgabe dar. Es gilt hier,
eine gleichmäßige Aufteilung der Rechenschritte auf die verfügbaren Prozessoren zu finden und
dabei bei der Partitionierung die hohe Anzahl an algorithmischen Abhängigkeiten zwischen den
einzelnen Schritten zu berücksichtigen. Des Weiteren müssen architekturbedingte Ressourcen-
limits wie z. B. die Speichergröße berücksichtigt werden.

Diese Arbeit widmet sich der Performanceanalyse und -vorhersage von parallelen Video-
kodiersystemen. Der wissenschaftliche Beitrag dieser Arbeit umfasst zwei Methoden, um die
Laufzeit von Videokodieralgorithmen effizient zu analysieren und bereits in früheren Phasen
des Designprozesses Annahmen über die Eigenschaft des Gesamtsystems treffen zu können.
Die erste Methode, das Data-Driven Profiling (DDP), ermöglicht es, die Laufzeit eines Videoko-
diersystems im Zusammenhang mit den zu verarbeitenden Daten zu analysieren. Dabei werden
traditionelle Laufzeitprofile automatisch auf die Kodierelemente und -schritte des Kodieralgo-
rithmus abgebildet. DDP gibt Aufschluss über die Laufzeit,die für die Kodierung einzelner
Kodierelemente und funktionaler Kodierblöcke aufgewendet wird und wie diese das Laufzeit-
verhalten von parallelen Videokodiersystemen beeinflussen. Die zweite Methode, die Partition
Assessment Simulation (PAS), macht sich strukturelle und funktionale Charakteristika hybrider
Videokodieralgorithmen zunutze, um Laufzeitabschätzungen für virtuelle Architekturen zur Vi-
deokodierung zu treffen. Diese Methode baut auf DDP sowie Konzepten der simulationsbasier-
ten Laufzeitvorhersage auf und ermöglicht bereits in einerfrühen Phase der Systementwicklung
das Ausprobieren unterschiedlicher Designvarianten und das schnelle Adaptieren von parallelen
Videokodiersystemen an Designvorgaben. Diese Arbeit beschreibt eine konkrete Implementie-
rung für das PAS Konzept und liefert mit Hilfe einer bestehenden Multiprozessorarchitektur eine
Verifikation und Genauigkeitsanalyse. Die Flexibilität, neue Designmöglichkeiten zu erschlie-
ßen, wird anhand konkreter Beispiele demonstriert.

Die vorgestellten Techniken ermöglichen es, beim Design von parallelen Videokodiersyste-
men gezielt und anwendungsspezifisch auf Komplexität und benötigte Hardwareresourcen ein-
zugehen. Bereits in einer frühen Phase des Designprozesseskönnen Abschätzungen über das
Laufzeitverhalten des Designs gemacht und dadurch das Entwicklungsrisiko signifikant gesenkt
werden.

vii



viii



Contents

List of Figures xiii

List of Tables xv

List of Abbreviations xviii

1 Introduction 1
1.1 Design of parallel video coding architectures . . . . . . . .. . . . . . . . . . 1
1.2 Motivation and objectives . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Resulting publications . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 4
1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Prior work on complexity and runtime estimation 7
2.1 Analytic runtime prediction . . . . . . . . . . . . . . . . . . . . . . .. . . . . 7
2.2 Runtime prediction based on dynamic profiling . . . . . . . . .. . . . . . . . 8

2.2.1 Statistical profiling . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10
2.2.2 Instrumented profiling . . . . . . . . . . . . . . . . . . . . . . . . . .10

2.3 Simulation-based runtime prediction . . . . . . . . . . . . . . .. . . . . . . . 13
2.3.1 Hardware simulation techniques . . . . . . . . . . . . . . . . . .. . . 13
2.3.2 Instruction set simulation . . . . . . . . . . . . . . . . . . . . . .. . . 13
2.3.3 HW/SW-codesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 High-level design exploration . . . . . . . . . . . . . . . . . . . . .. . . . . . 15
2.5 Partition Assessment Simulation in context of prior work . . . . . . . . . . . . 15
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Characteristics of modern video coding algorithms 17
3.1 Historical development of digital video coding . . . . . . .. . . . . . . . . . . 17
3.2 Concept of hybrid video coding . . . . . . . . . . . . . . . . . . . . . .. . . 19
3.3 Hierarchical structuring of video coding elements . . . .. . . . . . . . . . . . 21
3.4 Coding tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Spatial prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
3.4.2 Motion-compensated prediction . . . . . . . . . . . . . . . . . .. . . 23
3.4.3 Transformation and quantisation of residual data . . .. . . . . . . . . 27

ix



3.4.4 Deblocking filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.5 Entropy coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Parallel video decoding . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 28
3.5.1 Dependencies between macroblocks . . . . . . . . . . . . . . . .. . . 29
3.5.2 Functional partitioning . . . . . . . . . . . . . . . . . . . . . . . .. . 30
3.5.3 Data-parallel partitioning . . . . . . . . . . . . . . . . . . . . .. . . . 31

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Data-driven runtime analysis 39
4.1 Data-driven profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 39
4.2 Automatic generation of data-driven profiles . . . . . . . . .. . . . . . . . . . 41

4.2.1 Finite State Machines and Pushdown Automatons . . . . . .. . . . . . 42
4.2.2 Mapping profiling information to VCL and functional blocks . . . . . . 43
4.2.3 Extraction of coding information via function names .. . . . . . . . . 45
4.2.4 Extraction of coding information via instrumentation . . . . . . . . . . 46
4.2.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Profiling environment and test sequences . . . . . . . . . . . . .. . . . . . . . 47
4.3.1 Reference architecture . . . . . . . . . . . . . . . . . . . . . . . . .. 47
4.3.2 Test sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Experimental results for runtime analysis and visualization . . . . . . . . . . . 55
4.4.1 Complexity of processing VCL coding elements . . . . . . .. . . . . 55
4.4.2 Complexity of processing functional blocks . . . . . . . .. . . . . . . 58
4.4.3 Analysing complexity within individual subregions of a frame . . . . . 60

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 Virtual prototyping of parallel video coding systems 63
5.1 General aspects and design goals . . . . . . . . . . . . . . . . . . . .. . . . . 63
5.2 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 System specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 Characterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Implementation of the Partition Assessment Simulation. . . . . . . . . . . . . 75
5.3.1 Time domains within PAS . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.2 Task generation based on data-driven profiling . . . . . .. . . . . . . 76
5.3.3 Rule-based specification of data-dependencies . . . . .. . . . . . . . 76
5.3.4 Partitioning of video coding application . . . . . . . . . .. . . . . . . 77
5.3.5 Simulation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Concept verification and design space exploration results 83
6.1 Specification of a dual-core video coding system . . . . . . .. . . . . . . . . 83
6.2 Characterisation of virtual hardware . . . . . . . . . . . . . . .. . . . . . . . 84
6.3 Verification using a functional dual-core decoder splitting . . . . . . . . . . . . 87
6.4 Design space exploration . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 91

x



6.4.1 Functional partitioning . . . . . . . . . . . . . . . . . . . . . . . .. . 91
6.4.2 Data-parallel partitioning . . . . . . . . . . . . . . . . . . . . .. . . . 93
6.4.3 Alternative processor for parsing . . . . . . . . . . . . . . . .. . . . . 94

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Conclusions and future work 95
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1.1 Analysis of VCA runtime behaviour . . . . . . . . . . . . . . . . .. . 95
7.1.2 Modelling and simulation of virtual architectures . .. . . . . . . . . . 96

7.2 Open topics for future research . . . . . . . . . . . . . . . . . . . . .. . . . . 97

A Detailed description of test sequences 99

Bibliography 105

xi



xii



List of Figures

2.1 A simple control flow graph (CFG). . . . . . . . . . . . . . . . . . . . .. . . . . 9

3.1 Historical development of international digital videocoding standards. . . . . . . . 18
3.2 H.264 encoder and decoder structure. . . . . . . . . . . . . . . . .. . . . . . . . 20
3.3 Hierarchical structuring of a video stream in the H.264 standard. . . . . . . . . . . 22
3.4 H.264 intra-prediction modes. . . . . . . . . . . . . . . . . . . . . .. . . . . . . 23
3.5 Temporal prediction of macroblocks between frames. . . .. . . . . . . . . . . . . 24
3.6 H.264 inter prediction macroblock partitioning. . . . . .. . . . . . . . . . . . . . 24
3.7 GOP-Coding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
3.8 Visualisation of block edge deblocking in H.264. . . . . . .. . . . . . . . . . . . 28
3.9 Macroblock dependencies in H.264 decoding . . . . . . . . . . .. . . . . . . . . 29
3.10 Functional split of an H.264 decoder. . . . . . . . . . . . . . . .. . . . . . . . . . 30
3.11 The Single-row splitting approach. . . . . . . . . . . . . . . . .. . . . . . . . . . 31
3.12 Example of the Single-row splitting approach used withtwo cores . . . . . . . . . 31
3.13 Inter-processor dependencies in a multi-core system .. . . . . . . . . . . . . . . . 33
3.14 The Multi-column splitting approach. . . . . . . . . . . . . . .. . . . . . . . . . 33
3.15 Example of the Multi-column splitting approach . . . . . .. . . . . . . . . . . . . 33
3.16 The Slice-parallel splitting approach . . . . . . . . . . . . .. . . . . . . . . . . . 34
3.17 Example of the Slice-parallel splitting approach in the blocking version . . . . . . 34
3.18 Example of the Slice-parallel splitting approach in the non-blocking version . . . . 34
3.19 The Diagonal splitting approach . . . . . . . . . . . . . . . . . . .. . . . . . . . 36
3.20 Example of the Diagonal splitting approach . . . . . . . . . .. . . . . . . . . . . 36
3.21 Dependencies in the Diagonal and Multi-column splitting approaches . . . . . . . 36

4.1 Data-driven profiling at macroblock level . . . . . . . . . . . .. . . . . . . . . . 41
4.2 Example of a state transition diagram. . . . . . . . . . . . . . . .. . . . . . . . . 42
4.3 Example of a state transition diagram for an H.264 decoder. . . . . . . . . . . . . . 44
4.4 Structure of the SVENm architecture. . . . . . . . . . . . . . . . .. . . . . . . . 48
4.5 Floorplan and board of the SVENm architecture. . . . . . . . .. . . . . . . . . . 49
4.6 Visualization of test sequences used in work. . . . . . . . . .. . . . . . . . . . . 51
4.7 GOP-Coding of a sequence with 25 frames. . . . . . . . . . . . . . .. . . . . . . 52
4.8 Bitrates of the 16 test sequences coded at a Y-PSNR of 40 db. . . . . . . . . . . . . 53
4.9 Dynamic variations in the decoding time of individual macroblocks. . . . . . . . . 57

xiii



4.10 Dynamic variations in the runtime of H.264’s functional blocks. . . . . . . . . . . 59
4.11 Visualization of runtime complexity for the individual MBs of I/P/B-frames. . . . . 61

5.1 The Partition Assessment Simulation (PAS) . . . . . . . . . . .. . . . . . . . . . 64
5.2 System specification in the PAS . . . . . . . . . . . . . . . . . . . . . .. . . . . 66
5.3 Simple dependency graph for two macroblocks’ decoding tasks. . . . . . . . . . . 68
5.4 Sequential task order for a macroblock’s decoding tasks. . . . . . . . . . . . . . . 69
5.5 Mapping of VCA graph onto hardware. . . . . . . . . . . . . . . . . . .. . . . . 71
5.6 Algorithm for simulating parallel task execution in a VCA . . . . . . . . . . . . . 74
5.7 Functional partitioning of four macroblocks. . . . . . . . .. . . . . . . . . . . . . 79
5.8 Visualisation of the internal simulation process in thePAS. . . . . . . . . . . . . . 80

6.1 Relative and absolute runtime differences when calibrating the PAS. . . . . . . . . 85
6.2 Relative runtime differences in percent during PAS calibration. . . . . . . . . . . . 86
6.3 Absolute runtime differences in clock cycles during PAScalibration. . . . . . . . . 87
6.4 Absolute runtime differences during PAS verification. .. . . . . . . . . . . . . . . 88
6.5 Relative runtime differences during PAS verification. .. . . . . . . . . . . . . . . 89
6.6 Absolute runtime differences during PAS verification. .. . . . . . . . . . . . . . . 90
6.7 Runtime of the simulated decoder partitioning approaches. . . . . . . . . . . . . . 92

xiv



List of Tables

2.1 Example of dynamic function trace profiling. . . . . . . . . . .. . . . . . . . . . 11

4.1 Profile for the tasks of the decoder’s individual functional blocks. . . . . . . . . . . 42
4.2 Transition table of a state machine. . . . . . . . . . . . . . . . . .. . . . . . . . . 43
4.3 Macroblock-based H.264 profile information. . . . . . . . . .. . . . . . . . . . . 45
4.4 Detailed size and quantisation values for the test sequences’ frames. . . . . . . . . 54
4.5 Complexity dynamics during the decoder’s runtime. . . . .. . . . . . . . . . . . . 56

A.1 Test sequences 1 to 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 100
A.2 Test sequences 5 to 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 101
A.3 Test sequences 9 to 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 102
A.4 Test sequences 13 to 16. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 103

xv



xvi



Abbreviations

AI . . . . . . . . . . . . Automatic Instrumentation
ASLI . . . . . . . . . Automatic Source Level Instrumentation
BB . . . . . . . . . . . Basic Block
CABAC . . . . . . . Context Adaptive Binary Arithmetic Coding
CAVLC . . . . . . . Context Adaptive Variable-Length Coding
CFG . . . . . . . . . . Control Flow Graph
DAG . . . . . . . . . . Directed Acylic Graph
dB . . . . . . . . . . . . decibel
DCC . . . . . . . . . . Display Content Controller
DCT . . . . . . . . . . Discrete Cosine Transform
DDP . . . . . . . . . . Data-Driven Profiling
DDPL . . . . . . . . Data-Driven Profiling Library
DMA . . . . . . . . . Direct Memory Access
DPCM . . . . . . . . Differential Pulse Code Modulation
DR . . . . . . . . . . . Dependency Rules
FAF . . . . . . . . . . FIFO Assignment Function
FB . . . . . . . . . . . Functional Block
FIFO . . . . . . . . . First-In-First-Out buffer
fps . . . . . . . . . . . frames per second
FSM . . . . . . . . . . Finite-state Machine
GOP . . . . . . . . . . Group Of Pictures
HVS . . . . . . . . . . Human Visual System
HW . . . . . . . . . . Hardware
ICACHE . . . . . . Instruction Cache
IDCT . . . . . . . . . Inverse Discrete Cosine Transform
IEC . . . . . . . . . . . International Electrotechnical Commission
IP . . . . . . . . . . . . Instrumented Profiling
ISO . . . . . . . . . . . International Organization for Standardization
ISS . . . . . . . . . . . Instruction-Set Simulator
ITU . . . . . . . . . . International Telecommunication Union
ITU-T . . . . . . . . International Telecommunication Union - Telecommunication
kB . . . . . . . . . . . . kilobyte
LoP . . . . . . . . . . Level of Parallelisation
MAF . . . . . . . . . Memory Access Function

xvii



MB . . . . . . . . . . . Macroblock
MCP . . . . . . . . . Motion-compensated prediction
mDDR . . . . . . . . Mobible Double Data Rate Memory
MoE . . . . . . . . . . Model of Execution
MSE . . . . . . . . . . Mean Square Error
MV . . . . . . . . . . . Motion Vector
NAL . . . . . . . . . . Network Abstraction Layer
OoE . . . . . . . . . . Order of Execution
PAF . . . . . . . . . . Processor Assignment Function
PAS . . . . . . . . . . Partition Assessment Simulation
PDA . . . . . . . . . . Pushdown Automaton
PSNR . . . . . . . . . Peak Signal-to-Noise Ratio
PU . . . . . . . . . . . Processing Unit
QP . . . . . . . . . . . Quantisation Parameter
RISC . . . . . . . . . Reduced Instruction Set Computer
SBRP . . . . . . . . . Simulation-based Runtime Prediction
SIMD . . . . . . . . . Single Instruction Multiple Data
SIT . . . . . . . . . . . Software Instrumentation Tool
SoC . . . . . . . . . . System-on-Chip
SRAM . . . . . . . . Shared Random-access Memory
STO . . . . . . . . . . Sequential Task Order
SW . . . . . . . . . . . Software
TS . . . . . . . . . . . . Transport Stream
UID . . . . . . . . . . Unique Identifier
VA . . . . . . . . . . . Virtual Architecture
VCA . . . . . . . . . Video Coding Application
VCL . . . . . . . . . . Video Coding Layer
VCS . . . . . . . . . . Video Coding System
VHDL . . . . . . . . Very High Speed Integrated Circuit Hardware Description Language
VHSIC . . . . . . . Very High Speed Integrated Circuit
VLIW . . . . . . . . Very Long Instruction Word
VSD . . . . . . . . . . Virtual System Definition
Y-PSNR . . . . . . Peak Signal-to-Noise Ratio of the luma channel

xviii



CHAPTER 1
Introduction

1.1 Design of parallel video coding architectures

State-of-the-art video standards such as H.264 [ITU12] areused in a wide range of industrial
and consumer applications. This includes for example digital television broadcasting, video
surveillance and video conferencing. Compared to preceding video coding standards such as
MPEG-2 and MPEG-4 SP/ASP, improved coding efficiency could be reached by introducing
more advanced pixel processing algorithms (e.g. quarter-pixel motion estimation, integer-based
block transforms) as well as by the use of more sophisticatedalgorithms for predicting syntax
elements from neighbouring macroblocks (e.g. context-adaptive variable-length coding). These
new coding tools result in significantly increased CPU and memory loads required for coding a
video stream. In environments of limited processing power such as embedded systems, the high
computational demands pose a challenge for practical videocoding implementations [FG01].
Multi-core System-on-Chip (SoC) design provides an elegant solution to overcome these per-
formance limitations.

A SoC design combines multiple components such as processors and memories on a single
chip. The usage of existing and well-tested components can reduce the costs and the developing
time and results in a short time-to-market. The programmability of most SoCs allows later
modifications of the algorithm’s software which offers highflexibility and is of prime importance
for video coding. For example, for adapting the software when a new extension of a video
standard becomes available or to run different video codingalgorithms on the same platform.

The high computational demands of state-of-the-art video coding application (VCAs) pose
serious challenges on current SoC architectures. A naturalway to tackle this problem is the use
of multi-core systems. However, the efficient distributionof video coding algorithms among
multiple processing units (PUs) is a non-trivial task. For using the available processing re-
sources efficiently, an equally balanced distribution of the coding tasks onto the hardware units
must be found. The system designer has to consider data dependency issues as well as inter-
communication and synchronisation between the PUs. Furthermore, the resource limitations in
an embedded environment such as low computational power, small-sized memories and low bus
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bandwidth require an efficient software design. A parallel VCA approach must be able to work
under these resource restrictions.

1.2 Motivation and objectives

A major source for uncertainty within most VCA designs is that the software development and
partitioning is typically addressed at a late phase of the SoC design. At this stage, significant
resources already went into the system’s hardware design and integration and changes are ex-
pensive and only possible in a limited scope. However, from what has been outlined above,
multiple questions arise already at early design phases of amulti-core video processing system
when the components of the SoC design are chosen:

1. Can we reach the performance requirements of the VCA on theavailable hardware?

2. What hardware is required by the VCA to handle a specific setof video streams?

3. What is the optimal VCA partitioning for using the architecture’s resources most effi-
ciently?

In previous work, the first two questions have been widely discussed for single-core archi-
tectures. Various complexity estimation and runtime prediction techniques with their respective
advantages and disadvantages have been proposed. We describe existing complexity and runtime
estimation techniques and their strengths and weaknesses in detail in Section 2. However, the
existing profiling techniques for single-core VCAs are onlysuitable to a limited extent for ad-
dressing multi-core SoC design for parallel video coding applications in an efficient way. They
typically provide coarse profiling information on the larger functional blocks (e.g. the absolute
runtime spent in a decoding function and all sub-functions)but do not provide means for effi-
ciently analysing the runtime complexity of an VCA at the level where the parallelisation would
be implemented. This makes it hard to exploit the available profiling information when making
predictions about the single-core VCA runtime performanceon a multi-core architecture.

Addressing this weakness of existing profiling techniques is one major objective of this the-
sis. We provide a method to efficiently derive runtime information from single-core VCAs that
typically affects the system designers choice of parallelisation. For example, detailed execution
times for the video coding elements that are processed during the VCA execution and runtime
variation of individual functional blocks are provided. Weintroduce a new complexity analysis
technique that equips system designers with a toolset to extract runtime information at a level
where parallelisation will take place later on. We extend traditional complexity estimation and
profiling techniques in a way that enables more detailed analysis of a VCA’s parallel execution
behaviour. A special focus shall be given to the hierarchical data structures and functional blocks
of VCAs. They determine where parallelisation mechanisms can be integrated within the VCA
and must be considered carefully when analysing parallel execution behaviour.

The third question above introduces the need for predictingthe runtime of “virtual” VCA
partitionings, which typically is not accurately possiblewith traditional analytical models or too
time- and labor-intensive using existing hardware simulation techniques. Prediction techniques
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that base their runtime estimation on formal algorithm definitions (i.e. analytical runtime pre-
diction techniques) or runtime observations from single-core implementations typically cannot
consider parallel task concurrency and inter-task dependencies appropriately when estimating
the complexity of a VCA in a parallel architecture configuration. More powerful prediction
techniques that can simulate the hardware and software execution for virtual platforms typically
require an already partitioned VCA implementation. Estimating the runtime performance of a
parallel VCA’s software partitioning without starting thelabor-intensive implementation work
is not possible. Furthermore, many simulation techniques require circuit-based hardware sim-
ulation which is very time-intensive. These limitations due to (i) labor- and time-intensive im-
plementation aspects and (ii) time-intensive simulation limit the possibilities to estimate parallel
VCA designs at an early stage of the design process.

This thesis tackles these problems in two steps. Firstly, wewill introduce a modelling tech-
nique that allows the system designer to describe a VCA in an abstract way. We will combine
complexity estimationandvirtual prototyping techniques for describing “virtual” architecture
configurations. A framework that allows virtual prototyping of abitrary software and hardware
architectures for video coding that overcomes the need for implementing software or hardware
partitionings is developed. Secondly, a simulation framework that enables the simulation of this
“virtual” platform is introduced. It enables the system designer to obtain accurate estimates for
the runtime complexity of the VCA when decoding a video stream.

In summary, the capabilities of current runtime analysis and prediction techniques are typi-
cally not suitable for predicting the runtime behaviour of single-core VCAs on a parallel archi-
tecture in an accurate and fast way. The techniques introduced in this thesis equip the system
designer with a new toolset for tackling this problem and to reduce the technological risk during
the system design.

1.3 Contributions

The methods and applications contributed in this work shallenable system designers to effi-
ciently explore the behaviour of VCAs on parallel hardware architectures. The main contribu-
tions of this thesis are summarized in the following:

• We investigate what information is provided by traditionalsingle-core profiling techniques
and introduce an innovative technique for mapping this information onto the functional
blocks and coding elements of VCAs. This Data Driven Profiling (DDP) mapping tech-
nique enables the system designer to derive essential information on the VCA’s execution
behaviour and for making assumptions about the runtime behaviour of the VCA on a
parallel hardware platform.

• We introduce a modelling technique for describing VCAs’ coding elements, functional
tasks and the data-dependencies between these tasks. We introduce a high-level simu-
lation methodology, the Partition Assessment Simulation (PAS), for the modelling and
simulation of parallel VCA hardware architectures. This methodology estimates the per-
formance of a VCA for arbitrary virtual hardware and software configurations and enables
design space explorations of parallel video processing architectures.
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• We provide a simulator for analysing implementation aspects of the PAS methodology.
We verify the methodology on an existing hardware architecture and analyse its accuracy
for a real-world H.264 decoder scenario.

• We perform design space exploration for an H.264 decoder andevaluate the runtime per-
formance of various decoder partitionings on a virtual architecture.

We believe that the proposed high-level methods for estimating the computational complex-
ity of multi-core video coding systems is preferable over existing techniques, since these are
typically not suited for the complex nature of multi-core systems. They can often not consider
the concurrency and inter-processor dependencies inherent to multi-core systems. A valid alter-
native to our method is represented by the simulation-basedprediction techniques described in
Section 2.3. These methods can handle concurrency and inter-processor dependencies. How-
ever, for simulating the runtime behaviour of a parallel VCA, these approaches typically require
a well-defined or completely implemented architecture and apartitioned software (i.e. low-level
specification of the interfaces and components). Due to the vast amount of work that is re-
quired to implement each VCA partitioning approach, early high-level complexity estimations
are difficult to realize and the flexibility to explore many different software designs is limited.
The methodology introduced in our work aims to enable fast design space exploration and to
estimate complex multi-core video coding systems in a flexible, time- and labor-efficient way.

1.4 Resulting publications

The following publications in scientific journals and at conferences have resulted from the work
presented in this thesis:

Journals

• F. H. Seitner, M. Bleyer, M. Gelautz, R. M. Beuschel: Evaluation of data-parallel H.264
decoding approaches for strongly resource-restricted architectures,Journal on Multimedia
Tools and Applications, Springer, volume 53, issue 2, pages 431-457, 2011.

• F. H. Seitner, M. Bleyer, M. Gelautz, R. M. Beuschel: Development of a high-level sim-
ulation approach and its application to multi-core video decoding,IEEE Transactions on
Circuits and Systems for Video Technology, volume 19, issue 11, pages 1667-1679, 2009.

Conferences with proceedings

• F. H. Seitner, M. Bleyer, R. Schreier, M. Gelautz: Evaluation of data-parallel splitting
approaches for H.264 decoding,Proc. of the 6th International Conference on Advances
in Mobile Computing and Multimedia, pages 40-49, Linz, 2008. (oral presentation)

• F. Seitner, M. Bleyer, M. Gelautz: Development of multi-core video decoding platforms
based on high-level architecture simulations,Proc. of the Junior Scientist Conference,
pages 71-72, Vienna, 2008. (oral presentation)
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• F. Seitner, J. Meser, G. Schedelberger, A. Wasserbauer, M. Bleyer, M. Gelautz, M. Schutti,
R. Schreier, P. Vaclavik, G. Krottendorfer, G. Truhlar, T. Bauernfeind, P. Beham: Design
methodology for the SVENm multimedia engine,Proc. of the Austrochip 2008, page 113,
Linz, 2008. (poster presentation)

• F. H. Seitner, R. M. Schreier, M. Bleyer, M. Gelautz: A high-level simulator for the
H.264/AVC decoding process in multicore systems,Electronic Imaging, SPIE, volume
6821, pages 5-16, San Jose, 2008. (oral presentation)

• F. H. Seitner, R. M. Schreier, M. Bleyer, M. Gelautz: A macroblock-level analysis on the
dynamic behaviour of an H.264 decoder,IEEE International Symposium on Consumer
Electronics, pages 1-5, Dallas, 2007. (oral presentation)

Patents

• R. Schreier, F. Seitner: Method and apparatus for encoding and decoding of video streams,
US Patent, Application number 20080152014, filed 12/2007.

Technical reports

• F. H. Seitner, R. M. Schreier, M. Bleyer, T. Albrecht, M. Gelautz: Analysis of video algo-
rithms,FIT-IT Project VENDOR, WP2.2, Vienna University of Technology, 2007.

• F. H. Seitner, R. M. Schreier, M. Bleyer, T. Albrecht, M. Gelautz: Literature survey of
state-of-the-art video algorithms,FIT-IT Project VENDOR, WP2.1, Vienna University of
Technology, 2007.

1.5 Organization

The content of this thesis is organized into seven chapters.The current chapter provided a
general overview about the motivation and contributions ofthis work. In the following, we
briefly describe the chapters in the remainder of this thesisand provide links to the publications
listed before.

• In Chapter 2 we provide an overview of existing complexity estimation and runtime pro-
filing techniques. We discuss the individual techniques andexplain their limits when it
comes to multi-core architecture design and design space exploration. The main text of
this chapter is taken from our published papers [SSBG11,SSBG09].

• Chapter 3 outlines the fundamentals of hybrid video coding standards. In this chapter,
we derive the characteristics of hybrid video coding algorithms and describe the design
challenges of parallel video coding systems. The main text of this chapter is taken from
our published papers [SBSG08, SSBG11, SSBG08], with more details and additional ex-
planations.
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• We exploit these characteristics in Chapter 4 to introduce anovel runtime profiling method.
It addresses various short-comings of traditional dynamicprofiling techniques and enables
the correlation of runtime complexity with specific coding elements and functional blocks
of a hybrid video coding algorithm. This provides importantinsights into the complexity
and can be exploited for identifying bottlenecks and potential challenges in the design of
parallel coding solutions at an early stage of the development. The main text of this chapter
is primarily a compilation of our published papers [SBSG08,SSBG11,SSBG09,SSBG07],
with additional results and experiments.

• In Chapter 5, we introduce a virtual prototyping methodology, the Partition Assessment
Simulation (PAS) technique. We explain the design goals andtheoretic fundamentals and
describe an implementation of this prototyping concept. The main text of this chapter
is primarily a compilation of our published papers [SBSG08,SSBG11, SSBG09], with
additional details and explanations of the PAS concept and its implementation.

• In Chapter 6, we analyse the PAS in more detail and evaluate and verify this technique’s
accuracy using a real-world H.264 decoder. We use the PAS formodelling a virtual VCS
for demonstrating the possibilities towards efficient design space exploration using ex-
amples of functional as well as data-parallel partitioningapproaches. The main text of
this chapter is primarily a compilation of our published papers [SSBG11, SSBG09], with
additional experiments and results.

• Chapter 7 provides conclusions and an outlook on future work. The main text of this
chapter is primarily a compilation of our published papers [SSBG11,SSBG09].
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CHAPTER 2
Prior work on complexity and runtime

estimation

Obtaining information about the runtime complexity of an algorithm is typically highly im-
portant when developing the hardware or software components that compute the algorithm’s
individual processing steps. Accurate performance analysis supports important stages of a de-
velopment process such as the system design, optimisation,functional verification and testing.
For estimating runtime complexity, various prediction techniques have been developed. We can
divide the existing estimation techniques into three majorgroups: the analytical, the profiling-
based and the simulation-based approaches. In the Sections2.1, 2.2 and 2.3, we will describe
these techniques in more detail. Section 2.4 provides an overview of high-level design explo-
ration techniques. In Section 2.5, we put the techniques contributed in this thesis in the context
of prior work.

2.1 Analytic runtime prediction

Based on the fundamentals of the Computational Complexity Theory [FH03], advanced ana-
lytic methods for analysing an algorithm’s complexity havebeen introduced. For example, the
Static Algorithm Analysis [PK89] and Worst Case Execution Time (WCET) estimation [LM95,
MML97] have been evolved. These techniques analyse formal definitions of an algorithm, for
example its source code, for estimating the algorithm’s computational complexity.

Most theoretic complexity approaches describe the complexity of an AlgorithmA using an
instance-basedcomplexity measureTA[·] [ST09]. This measure defines the complexityTA[x]
of an AlgorithmA for an input instancex. For each AlgorithmA, an input domainΩ containing
all possible input instancesx is provided. For a finite input domainΩ, this complexity measure
defines a|Ω| dimensional vector (i.e. each element in this vector represents the complexityTA[x]
of an input instancex ∈ Ω). Depending on the number of input instances|Ω|, the effort for
estimating and describing an algorithm’s complexity strongly varies.
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For a more specific analysis of an algorithm’s complexity, the input domainΩ is usually
viewed as the union of a set of sub-domains{Ω1,Ω2, ...Ωn}. Each sub-domainΩi represents all
input instances of sizei. For example, in the context of sorting algorithms,Ωi refers to the set
of all tuples containingi elements.

Based on these sub-domains, the complexity of an algorithmA is often described as a func-
tion of the input size of the problemA aims to solves. We can define a scalarTA(n) which
summarizes the complexityTA[x] for all instancesx ∈ Ωn. In our example with the sorting
algorithm, TA(n) describes the complexity of sorting an input instance withn elements. In
Theoretical Computer Science, the WCET is one of the most commonly used metrics for sum-
marizing the complexity of an algorithm. The WCET of Algorithm A can be derrived in the
following way:

WCETA(n) = max
x∈Ωn

TA[x] (2.1)

It describes the maximal execution time of an AlgorithmA processing an input instance consist-
ing of a tuple ofn elements.

Runtime prediction based on static analysis measures has multiple shortcomings. First, the
execution paths of most algorithms depend on the data valuesof the input instances. For exam-
ple, input-dependent recursions and branches in an algorithm can causedynamicvariations in an
algorithm’s execution path and its runtime. Consequently,theoretic complexity measures such
as the WCET do not necessarily reflect an algorithm’s runtimebehaviour under real working
conditions [ST09].

Second, analytical complexity predictions cannot easily be bound to a specific hardware
platform. The runtime of an algorithm depends on the processing resources of the executing
platform (e.g. instruction set, processing pipeline, clock rate). An algorithm that performs
well in theory not necessarily does this on a platform with physical processing resources and
architectural limitations.

2.2 Runtime prediction based on dynamic profiling

Dynamic profiling aims to address the limitations of analytical runtime prediction by observ-
ing the execution of an algorithm on a physicalreference platform1. Most hardware platforms
provide tools for observing program execution during runtime and formeasuringthe runtime of
executing programs. Prediction techniques based on dynamic profiling exploit the knowledge
gained from thesecomplexity measurements. Based on observations of the execution behaviour
of a ProgramP on a reference platformR, the system designer makes assumptions about the
program’s execution behaviour.

Similar to the input domainΩ used in analytical runtime prediction, runtime measurements
obtained via dynamic profiling aim to reflect the complexity for a range of input instances. For
example, for a video decoder the bitrate of a coded input stream typically has a strong impact on
the runtime complexity. This can be used for defining input sub-domains{Ω1,Ω2, ...Ωn, ...} for

1In the context of this work, we use the term program to refer toan algorithm’s source code or binary represen-
tation on a physical hardware platform.

8



A

B

C

A

B

C

(a) (b)

Figure 2.1: A simple control flow graph (CFG): Each node represents a basic block (BB) of a
program. The directed edges between the nodes represent thejumps from one BB to another
BB. (a) A CFG with three BBs: BlockA represents the first BB of the program. After BlockA
either BlockB or BlockC are executed. BlockC is the last BB executed within the program.
(b) A CFG with three blocks and a loop between BlockA andB.

our VCA where each sub-domain represents the decoding complexity of video streams within a
well-defined bitrate range. For obtaining the runtime complexity of a subdomainΩi, we would
profile multiple input streams within the domain’s bitrate range. The longest or average exe-
cution times a VCA requires to decode these streams would reflect the WCET and the average
runtime complexity for this input sub-domain, respectively.

In practice, dynamic profilers regard a program as a set of Basic Blocks (BBs). The term
Basic Block has been introduced by Allen [All70] and refers to a linear sequence of program
instructions that has no jump instructions contained within it. The first and last instructions of
each basic block are calledentry pointandexit point, respectively. For entering a BB, the entry
point of this BB may be entered from one or more exit points within the program.2

BBs are usually the basic units a compiler works with during the optimisation phase and also
enable profiling of the individual program regions. The program is regarded as a graph where
the BBs form the graph’s nodes and the jumps between the BBs the transitions between the
nodes. These graphs are called Control Flow Graphs (CFGs). In Figure 2.1a and 2.1b, we show
two simple CFGs with three states each. In Figure 2.1a, a transition from StateA to StateB as
well as to StateC is possible. In StateB, only a transition to StateC is possible. Figure 2.1b
contains a loop where the StatesA andB can be executed multiple times before reaching the
final StateC.

The execution time of a ProgramP is the sum of execution times of all its BBs multiplied
by the number of executions of the BBs. We can compute the execution timetP of ProgramP
that consists ofn BBs (BB1..BBn) in the following way:

tP =
n
∑

i=1

tBBi
∗ fBBi

(2.2)

2A BB Y that is entered after the execution of a BBX is called asuccessorof BB X. BB Y is called the
predecessorof BB X.
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The termstBBi
andfBBi

refer to the execution time and the number of executions ofBBi,
respectively.

In practice, dynamic profiling techniques can be classified into two major groups:Statistical
and instrumentedprofiling techniques. In the following sections, we describe these techniques
in more detail.

2.2.1 Statistical profiling

In statistical profiling, the program counter (PC) of a program is observed during the program’s
execution. The value of the PC represents the position wherethe execution of the program cur-
rently takes place. By sampling the PC in regular time intervals, conclusions about the executed
parts of the program and the frequency at which these parts are executed can be derived. The
time interval between each sample (i.e. thesampling periodTS) is typically known to the profil-
ing environment. It is measured in seconds and is the inverseof thesampling frequencyFS (i.e.
the number of samples taken per second):

TS =
1

FS
(2.3)

Based on the total number of samplesnP that lie within memory blocks assigned to a Pro-
gramP , we can estimate the total runtimet̂P of this program:

t̂P = TS ∗ nP (2.4)

In this estimation, each sample is counted as a period ofTS seconds.
Since the memory location of each BB of the program is typically known, we can unambigu-

ously assign each PC sample to a BB. This allows us to derive the number of samplesnBBi
that

occurred within a blockBBi during the execution ofP and to estimate the total runtimêtBBi

spent inBBi during the program’s execution:

t̂BBi
= t̂P ∗ nBBi

nP
(2.5)

The factor
nBBi

nP
is the percentage of the BB’s runtime on the total runtime.t̂P is the total runtime

of ProgramP

Note that t̂BBi
is statistically approximated and does not necessarily represent the exact

runtime ofBBi. Especially, when using a low sampling frequencyFS and when measuring
small and rarely executed BBs, the number of observed samples can strongly vary between
measurements. Furthermore, no accurate information on thenumber of executions of each BB
during the execution ofP can be obtained by statistical profiling techniques.

2.2.2 Instrumented profiling

Instrumented Profiling (IP) techniques extend the target progam with additional program instruc-
tions [GKM82, BL94]. Instrumentationrefers to the task of inserting instructions for profiling
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Listing 2.1: Example of a dynamic runtime trace: For each execution of a function, the times
when the function is entered and exited are retrieved by the profiler.

1 CALL Star tH264Decoder t ime = 1
2 CALL DecodeFrame t ime = 2
3 CALL DecodeMacroblock t ime = 1000
4 . . .
5 RETURN t ime = 10000
6 . . .
7 CALL DecodeMacroblock t ime = 10020
8 . . .
9 RETURN t ime = 23000

10 CALL DecodeMacroblock t ime = 23001
11 . . .
12 RETURN t ime = 35000
13 RETURN t ime = 35001
14 RETURN t ime = 35002

Function name Calls Gross runtime Net runtime Net runtime (Cycles/Call))
Cycles % Cycles % Min. Avg. Max.

StartH264Decoder 1 35002 100.00 2 0.1 2 2 2
DecodeFrame 1 35000 99.9 1019 2.8 1019 1019 1019
DecodeMacroblock 3 33981 97.1 33981 97.1 9001 11327 12981

Table 2.1: Dynamic profile: For a VCA consisting of three functions, the table provides the
profiled gross and net runtimes. Additionally, the table shows the minimal, average and maximal
runtime for each function call. More details are provided inSection 2.2.2.

purposes into a program. These instructions collect information about the behaviour of the pro-
gram during runtime such as the program’s execution path. Instrumented Profiling at BB level
can gather information about the time when a BB is entered andexited, the frequencyfBBi

and
durationdBBi

of a basic blockBBi.
The output of an instrumented profiler typically contains a stream of recorded events such

as calls to the BBs of a program. This set of events is referredto as the profiler’strace. For a
more intuitive interpretation by the system designer, modern profiles typically maps the events
of a trace to the program’sfunctional level(i.e. source code functions).

Listing 2.1 shows an example of a simple trace at functional level of a VCA. In this example,
the VCA consists of three functions:StartH264Decoder, DecodeFrameandDecodeMacroblock.
The trace provides insights when a functionfj ∈ FV CA is called or left. We refer to functionfj
ascalleeand the function which calledfj ascaller.

Dynamic profilers typically provide a summary of a trace’s observations (i.e. theprofile).
A functional profile of the trace from Listing 2.1 is given in Table 2.1. This table provides a
summarized complexity information that can be exploited for optimising the VCA’s computa-
tional expensive parts. For each function, information such as the number of function calls, the
absolute and relative runtime in cycles and percentage of the total program runtime are typically
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obtained. Gross runtime (i.e. cumulative runtime of all functions that occur during a function
execution), net runtime (=function’s gross runtime without runtime spent for sub-function exe-
cution) and statistical information on minimum, average and maximum runtime per function call
enable us to concentrate on runtime expensive functions during the optimisation. Time-intensive
optimisations (e.g. hardware-dependent code optimisations using assembler code) for functions
with insignificant complexity can be avoided.

However, placing profiling instructions inside a target program can cause changes in the run-
time performance. Additional profiling instructions are executed during the program execution
which increases the runtime complexity. The increased number of instructions can further cause
changes in the platform’s instruction caching strategy andresult in significant changes in the to-
tal runtime. Modern architectures provide efficient hardware support for reducing the impact of
instrumentation on a program’s runtime. They provide specific instructions for tracing the pro-
gram’s execution with a minimal execution overhead. Furthermore, profiles have been evolved
that estimate the complexity overhead caused by the profiling and correct the profiling results
based on this.

Despite the advanced hardware support of instrumented profiling, the additional profiling
instructions can have a significant impact on the compile process and the resulting binary. Im-
pacts on the program runtime behaviour occur. For keeping this impact low, hybrid profiling
techniques based on statistical sampling (Section 2.2.1) and IP are used in practice. This keeps
the instrumentation overhead low and results in more accurate runtime measurments. For ex-
ample in gprof [GKM82], instrumentation is used for collecting the information about function
frequency and function entry/exit times and statistical sampling for measuring the runtime.

Instrumentation of profiling instructions

For instrumentation, manual as well as automatic techniques exist. Manual Instrumentation
refers to the manual insertion of the profiling instructionsinto a target program’s source code.
This is typically used for profiling and debugging specific parts of a program. The manual
insertion of profiling instructions can be highly labor- andtime-intensive and for more extensive
profiling, Automatic Instrumentation(AI) techniques have evolved.

AI automatically inserts profiling instructions at relevant positions of the program. Various
AI techniques have been introduced that differ in the way theinsertion of the profiling instruc-
tions into the program is done.Automatic Source Level Instrumentation(ASLI) analyses the
source code of a program and inserts the profiling instructions directly into the program’s source
code (i.e. before the program’s compilation into binary code). An example of ASLI has been in-
troduced by Ravasi and Mattavelli [RM05]. They have developed the Software Instrumentation
Tool (SIT) which extends traditional C source code toinstrumentedC++ classes. This instru-
mentation provides detailed information on the number of arithmetic and memory load/store
operations executed during a program’s execution.

In a similar spirit, the ATOMIUM tool [NCK+96] performs high-level transformation of C
code. The focus of this tool lies on memory analysis. TheData Transfer and Storage Explo-
ration methodology (DTSE) is introduced. Based on this methodology, C code can be optimised
in terms of execution time, memory size and power consumption.
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Apart from AI of the program’s source code, techniques for instrumenting the binary of a
program exist. This instrumentation can take place during the compiling [GS04] as well as the
binary linking [SE94] stages of a program. Furthermore, dynamic binary analysis tools such as
Valgrind [NS07], PIN [LCM+05] and DynamoRIO [BGA03] exist that instrument programs at
runtime.

2.3 Simulation-based runtime prediction

In Simulation-based Runtime Prediction (SBRP), asimulator mimics the physical hardware
platform and its behaviour over time. This enables the designer to model a hardware platform
before it is physically created and to simulate a program’s runtime execution on this “virtual”
platform. Since the hardware is simulated, very detailed observation of the program’s runtime
behaviour on this platform is possible.

The existing simulation approaches can be divided into fourmajor groups:Hardware simu-
lation, instruction set simulation, HW/SW-codesignandhigh-level simulation techniques.

2.3.1 Hardware simulation techniques

For describing the hardware logic (i.e. the electronic circuits), the design and the temporal
behaviour of a hardware design, Hardware Description Languages (HDLs) are typically used.
Examples of HDLs are VHDL [VHD88], Verilog [TM91] and SystemVerilog [SDF06]. In con-
trast to software languages such as C, important characteristics of HDL languages are (i) the
explicit notion of time and (ii) the capability to describe concurrent events in a formal way. Both
characteristics are primary attributes of hardware and enable accurate specifications of circuits
and physical hardware blocks. A simulator interprets the semantics of the HDL statements and
mimics the behaviour of a hardware design’s individual circuits over time.

The simulation of HDL descriptions allows the system designer to specify, test and verify
the hardware logic before the design is physically built. However, HDL simulations of com-
plex hardware designs are computationally very expensive and time consuming. This limits the
ability to simulate the execution of complex software applications on an HDL-based hardware
design simulator. Instruction Set Simulators are typically more suitable for this purpose.

2.3.2 Instruction set simulation

An Instruction Set Simulator (ISS) is a program that simulates the execution of a program on a
programmable processor. The system designer describes theindividual registers, the operations
and the decoding pipeline of this processor. The ISS mimics the “virtual” processor’s progress
over time by simulating the execution of the program’s individual instructions in the decoding
pipeline.

Compared to an HDL simulator, an ISS regards each register asa “virtual” variable. De-
tailed profilings about a program can be retrieved without simulating the underlying hardware
logic [CK94, WR96]. This reduces the simulation complexityand hence the simulation time
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significantly. The simulation at a higher level of abstraction makes ISS computationally less ex-
pensive than HDL simulations and more suitable for analysing and developing complex software
applications.

In [HS09], an accurate profiling tool based on ISS for fast andaccurate performance, power,
and memory access analysis of embedded systems is introduced. This approach simulates hard-
ware and software at an instruction level which enables the exploration of different low-level
hardware configurations setups.

2.3.3 HW/SW-codesign

The flexibility of software (SW) design compared to hardware(HW) implementations have re-
sulted in the development of advanced HW/SW-codesign methods such as described in [KM96,
CLN+02, YYS+04, WPH+05]. These methods enable the systematic integration, testing and
verification of new HW design implementations. Verified SW implementations typically serve
as a starting point for HW/SW-Codesign techniques. Compared to a hardware design, imple-
menting a complex algorithm in software has multiple advantages. This includes, for example,
a faster and more flexibe development using high-level programming languages and easier cor-
rection of design errors. One prime intention of HW/SW-Codesign is the systematic transition
from a functionally verified complex SW implementation to a corresponding HW design. This
is typically done in the following way:

First, the system designer verifies the functional correctness of the SW implementation and
the individual functional components using e.g. an ISS or another physical platform the SW can
be compiled and executed on. Second, one SW component after the other is transferred into a
corresponding HDL description and simulated using a hardware simulator. By connecting the
HW simulator with the simulation environment where the SW verification has taken place, each
HW component can be tested in the context of the whole implementation. The designer can
find differences between the software and hardware implementation and verify the correctness
of new HW blocks. For example, by comparing the data that is exchanged via the interfaces
between the SW and the HW components or by comparing the results between the “pure” SW
and the HW/SW design.

Apart from verification and migration from SW to HW, HW/SW-codesign approaches ex-
ist that target the modelling of virtual prototypes for new system designs. Examples are the
OVPsim simulator [Agr09], the M5 simulator system [BDH+06] and the simulation platform
Simics [MCE+02,VAG05]. Typically, multiple processor simulation models are connected with
each other. By simulating parallel execution and inter-communication of the SW components
running on these processors, these approaches mimic the parallel system’s execution behaviour.
They predict the real protoype’s runtime behaviour and provide means for efficiently developing
real-world design concepts. This enables evaluation and improvement of the design as well as
investigation of design alternatives before a real and expensive prototype is built.

These simulators simulate the HW as well as the SW componentsof the system. How-
ever, these methods have two major shortcomings. First, thesimulators often mimic the exact
behaviour of each HW component (i.e. processor pipeline, caches, memory subsystems, etc.).
This results in high computational complexity and limits the possibilities for simulating many
HW and SW configurations. Second, each SW component has to be implemented for its specific
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target processor and requires an individual SW partitioning for each virtual design. This is time-
consuming and reduces the flexibility to explore many SW partitionings and different HW/SW
mappings.

2.4 High-level design exploration

High-level design exploration aims to reduce the design effort for complex systems by introduc-
ing abstract algorithm models that can be efficiently simulated and verified on virtual platforms.
The Ptolemy II software environment [EJL+03,Lee10] takes a step towards event-oriented mod-
eling of heterogeneous and embedded systems. This framework focuses on hierarchical descrip-
tion of complex heterogeneous systems. The main focus of Ptolemy is the hierarchical struc-
turing and combining of multiple models into a heterogeneous system. This includes efficient
ways to define nested models and sub-models and the unambiguous definition of heterogeneous
systems using multiple simulation models.

In the context of high-level simulation and video coding, the area of Reconfigurable Video
Coding (RVC) [CAM09, BEJ+11] has evolved recently. The prime goal of RVC is implemen-
tation independency and retargetability of video coding algorithms. It uses the CAL actor-
language [EJ03] for describing the functionality of a videocoding algorithm in an abstract way
without taking into account any concrete implementation. Based on a CAL high-level descrip-
tion, an automatic transformation into an implementation language such as C or SystemC and
further into a low-level representation is possible. This enables fast implementation of video
coding tools in a platform-independent way.

2.5 Partition Assessment Simulation in context of prior work

In a spirit similar to Ptolemy, the Partition Assessment Simulation (PAS) that is introduced in
this thesis uses an event-oriented modeling approach for mimicking the execution of parallel
architectures. The underlying concept behind PAS combinestraditional profiling techniques
and high-level modelling and simuation approaches for obtaining accurate runtime estimations
of complex and virtual multi-core VCSs. While more details on the PAS will be provided in
Sections 4 and 5, this section aims to set the PAS concept intothe context of prior work.

The PAS can be seen as an extension of traditional dynamic runtime profiling and high-level
simulation techniques. The principle of traditional dynamic profiling techniques is extended in
a way that runtime complexity can be set in the context of a VCA’s data structures, functional
blocks and the input data that is processed. A VCA and its data-processing behaviour can be
defined in an abstract way and runtime profiling information can be mapped onto these defini-
tions. Especially for data-intensive and parallel applications such as multi-core video coding,
this technique can provide essential insights into a program’s runtime behaviour.

In the context of high-level simulation, the availibility of such a detailed runtime profiling
information opens up new means for estimating the runtime behaviour of virtual and distributed
VCAs. Multi-core HW platforms as well as VCAs can be described by high-level models. By
introducing means for simulating these models and by exploiting the obtained profiling infor-
mation, accurate runtime predictions become possible. Prototyping of many new virtual designs
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and exploration of different parallelisation approaches can be done without needing to adapt the
software design.

In contrast to CAL/RVC, PAS focuses only on modelling aspects essential to the parallel
execution behaviour of a VCS and less on detailed functionaldescription. This enables a clear
focus on high-level design aspects of parallel systems without the need to specify low-level
functionality (i.e. below the level where the parallelisation takes place) and results in simplicity
and descriptive clarity. The PAS exploits available hardware profiling information during the
high-level simulation and can make accurate runtime predictions without the need for a detailed
system description.

2.6 Summary

Various techniques for runtime estimation have been introduced in previous works. These tech-
niques can be grouped into analytical, profiling-based and simulation-based methods.

Analytical estimation techniques enable performance estimations without any concrete hard-
ware platform and only based on formal algorithm definitions. However, they are not well-suited
for estimating dynamic and input-data dependent runtime behaviour of more complex video cod-
ing algorithms in an accurate way.

Statistical and instrumented profiling techniques can address this shortcoming but require
a reference platform where measurements can be obtained. However, these techniques are not
applicable for making runtime predictions for virtual architectures during the design phase since
at this stage no implementation exists.

Simulation techniques that model the hardware architecture and runtime behaviour in a de-
tailed (bit-accurate) way such as hardware simulation and instruction-set simulation techniques
can provide accurate runtime predictions in this case. However, the modelling of a VCS using
existing simulation techniques is typically too time-intensive to be usable for virtual prototyping
in early design stages. The focus of these simulation approaches is on accurate modelling of the
functionality and less on obtaining runtime estimates in a fast way.

The PAS methodology introduced in this thesis tries to combine existing profiling techniques
and the idea of simulated runtime estimation to provide a high-level vitual prototyping solution.
Efficient runtime predictions become possible in a flexible way. This is essential for fast VCS
design, which has to address the short development cycles oftoday’s video coding applications.
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CHAPTER 3
Characteristics of modern video coding

algorithms

In this chapter, the characteristics of state-of-the-art video coding algorithms and architectures
are described. Understanding the fundamental structure and processes of VCAs and their impact
on the hardware architecture is essential for this work. It enables us to derive the methods for
performance profiling and simulation of virtual video coding systems that are introduced in later
chapters. We focus on the video decoder design since parallelisation of this part of the coding
process is typically more challenging than the encoder side. This results from the fact that video
coding standards typically specify the decoding part (e.g.coding tools, maximum bitrate and
resolution, etc.) very precisely and place strong constraints on the decoder. The encoder’s func-
tionality is rarely specified, which provides more flexibility when implementing the encoder’s
design. Furthermore, decoder solutions are typically located in consumer products and run on
computationally less powerful hardware. This results in a high demand for computationally
efficient decoder solutions.

After a short historical overview ondigital video codingin Section 3.1, characteristics of
modern video coding algorithms are introduced in Section 3.2. We use the H.264 video coding
standard for characterising the structure and mechanisms of hybrid video coding. In Section 3.3,
we describe how video data is typically structured in a hierarchical way for achieving resource-
efficient data processing. Section 3.4 provides more details on video coding tools available
in state-of-the-art video coding standards. In Section 3.5, we describe various parallelisation
approaches for H.264 decoding and explain the challenges ofparallel decoder designs.

3.1 Historical development of digital video coding

In 1984, the H.120 video coding standard [ITU93] was introduced by the ITU-T (Interna-
tional Telecommunication Union - Telecommunication). This coding standard was based on
DPCM (Differential Pulse Code Modulation) coding and achieved video compression by reduc-
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Figure 3.1: Historical development of international digital video coding standards based on the
overview in [Beu10].

ing short-term redundancy in the video signal. Even though the H.120 standard was extended in
1988 and 1993 by adding more advanced coding tools such as motion-compensation, the high
computational complexity of DPCM at encoder and decoder side and low compression efficiency
led to the emerging of more advancedhybrid video coding schemes. These hybrid schemes typ-
ically combine temporal prediction (i.e. inter-prediction between frames) and local prediction
(i.e. intra-prediction inside a frame) for removing temporal as well as spatial redundancy. This
scheme is referred to as hybrid video coding and builds the foundation of most video coding
standards used today.

The concept of hybrid video coding was first applied in the H.261 [ITU88] video confer-
encing standard, which was released in 1988 by the ITU-T standardisation organisation. Con-
ceptual elements of this algorithm included hierarchical structuring of video data into mac-
roblocks (MBs), MB-based motion compensation and transform as well as variable-length code
(VLC) entropy coding schemes. These techniques were further extended by the MPEG-1 video
standard (ISO/IEC 11172-2) by the International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC). The MPEG-1 standard was released in 1992
by the ISO/IEC and used the same concepts and coding tools as H.261. The major improvement
compared to H.261 was the introduction of half-pixel accurate and bi-directional motion predic-
tion resulting in higher compression efficiency at the cost of increased processing complexity.

New tools for coding of interlaced images as well as high bitrates and high resolution images
up toHigh Definition(i.e. 1920 x 1080 pixel) were introduced in the MPEG-2 standard. MPEG-
2 is a joint standard of the ISO and ITU working groups and referred to as ISO/IEC 13818-
3 [ITU00] and ITU-T H.262. In contrast to most video coding standards, MPEG-2 was backward
compatible with its predecessor MPEG-1 (i.e. MPEG-2 decoders support decoding of MPEG-1
streams). MPEG-2 was widely accepted for media distribution and broadcasting, for example
on Digital Versatile Discs (DVDs) and for Digital Video Broadcasting (DVB), and has been
used within a wide range of consumer and professional products for video storage and digital
broadcasting.
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In 1995, the H.263 [ITU05] standard for video conferencing applications was released. Es-
sential coding tools for video conferencing and low-bitrate coding applications such as vari-
able prediction block sizes, advanced deblocking and forward error correction were introduced.
Later enhancements of H.263 were released in 1998 and in 2001and are known as H.263+ and
H.263++, respectively.

The MPEG-4 standard [ISO01] released in 1999 introduced a wide range of advanced coding
tools for describing and coding of mixed media formats such as audio and video coding, 3D
graphics content, animation and fonts. Originally, video coding functionality was specified in
Part 2 of MPEG-4. This part provides two coding profiles, the Simple Profile (SP) which targets
low bitrate scenarios and the Advanced Simple Profile (ASP) targeting higher bitrate coding.
In 2003, the MPEG-4 Part 10 Advanced Video Coding standard was released. This standard
has been jointly developed by ITU and ISO and is also known as H.264/AVC [ITU12]. The
primary development targets of H.264 were significant improvements in coding efficiency, an
bit-exact match between encoding and decoding for avoidingdrifts between encoder/decoder
side and advanced error robustness. Due to the strong improvements of H.264 in terms of coding
efficiency and its flexibility to address many applications such as low-bitrate and low-latency
transmission efficiently, H.264 has gained a dominant position amongst current video standards.
This can be seen in its obligatory support in the Blu-ray standard and for DVB broadcasting and
as an HTML5 video standard.

Various amendments have been added to H.264 over the last years. For example, in 2007 the
Scalable Video Coding (SVC) amendment and in 2009 the Multi View Coding (MVC) amend-
ment have been added. SVC provides coding capabilities to H.264 to efficiently encode video
signals at multiple spatial resolutions, multiple temporal resolutions and multiple quality lev-
els. This increases the flexibility when distributing content over heterogeneous media channels
with different transmission capabilities or to displayingdevices with strongly different display-
ing capabilities. MVC is targeting efficient coding of multiple video signals where redundancies
between the signals exist. An application for MVC would be coding of stereoscopic 3D content
where streams for left and right eyes and from similar viewing positions are encoded simultane-
ously.

As a competing standard to H.264, the VC-1 video coding standard [SMP06,KL07,JBH08]
was released in 2006 by the Society of Motion Picture and Television Engineers (SMPTE) under
the name SMPTE 421M. Originally, VC-1 was based on Microsoft’s Windows Media Video 9
(WMV-9) codec [SHH+04] and is functionally equivalent to this codec. Next to H.264, it is one
of the obligatory standards used for coding video data on Blu-ray discs.

Apart from international video standards, a wide range of national standards such as the
Audio and Video coding Standard of China (AVS)[WZ06,BJR+07] or open-source codecs such
asVP-8 [BWX11] have been introduced. The majority of these standards is based on a hybrid
coding scheme and uses similar coding tools too those provided in H.264 and VC-1.

3.2 Concept of hybrid video coding

In this section, the characteristics of hybrid video codingalgorithms are explained. In the con-
text of this work, we use the H.264 video standard [ITU12] forexplaining the fundamental

19



Prediction

Reconstruction

Transformation
+ Quantisation

Inv. Quantisation +
Inv. Transformation

Inv. Quantisation +
Inv. Transformation

Entropy
Encoding

Entropy
Decoding

Spatial
Prediction

Spatial
Prediction

Temporal
Prediction

Temporal
Prediction

Motion
Estimation

Deblocking

Deblocking

-

+

+

Frame
Reorder

Frame
Reorder

Reference
Frames

Reference
Frames

Input
Frame

Decoded
Frame

Encoded
Bitstream

Encoded
Bitstream

Mode
Selection

H.264 Encoder

H.264 Decoder

Prediction Residual Transformation
and Quantisation

Entropy Coding

Entropy Decoding

Reconstruction
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and quantisation, inverse quantisation and inverse transform, frame deblocking and entropy en-
coding. The decoder contains a subset of the encoder’s functional blocks: Entropy decoding,
inverse quantisation and inverse 2D transform, predictionand deblocking.

mechanisms underlying hybrid video coding. The strong structural similarities between hybrid
video coding algorithms make the results of this thesis alsoapplicable to other standards such as
MPEG-2, VC-1 or AVS. Apart from structural similarity, H.264 represents the development of
video coding over the last three decades and belongs to the most efficient but also computation-
ally most demanding video coding algorithms available. This makes parallelisation an attractive
option for H.264 encoder/decoder designs.

Figure 3.2 visualises the H.264 encoding and decoding processes. The first stage of all hy-
brid video coding algorithms is the prediction of each frame’s pixel values based on information
from neighbouring pixels within the same frame (i.e. spatial prediction) or neighbouring frames
(i.e. temporal prediction). Second, the encoder computes the difference between predicted and
original pixels and transforms thisresidual informationusing adiscrete cosine transform(DCT).
This DCT transformation results in a spatial decorrelationand an efficient represention of rele-
vant information in a few coefficents. After the DCT, all coefficients are quantised. This step
aims to remove information the human visual system (HVS) is less sensitive to. Video coding al-
gorithms such as H.264 that typically lose information during this quantisation are referred to as
lossy codingalgorithms. The rate control of an encoder is located at thisquantisation stage since
adapting the “aggressiveness” of the quantisation enablesthe encoder to control the amount of
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information that is discarded and the bitrate used for encoding the video data. Third, in the
reconstruction the coded residuals are inverse quantised and inverse transformed. Accumulated
with the prediction data, this information is used for temporal prediction of future frames. H.264
uses a deblocking filter for removing blocking artifacts at the boundaries between MBs. The fil-
ter aims to remove blocking artifacts while maintaining thesharpness of true edges. In H.264,
an advanced deblocking method was introduced, which increases the subjective quality signifi-
cantly and results in a bit rate reduction of 5%-10% for the same objective quality compared to
the non-filtered video. In contrast to previous standards, the deblocking filter is applied within
the reconstruction loop of the en-/decoding process (Figure 3.2) and is also referred to asin-
loop deblocking. Fourth, the decoder uses an entropy coding algorithm for removing statistical
redundancy within the coded elements of prediction and residual data.

On the decoder side, these steps are done in a reverse order. First, the decoder entropy de-
codes the coded bitstream and retrieves the residual information and the prediction information
from the encoded bitstream. Second, the decoder predicts each MB’s pixel data using either
spatial or temporal prediction. Third, the predicted pixelinformation is combined with the in-
verse quantised and inverse transformed residual information. As a last step, debocking of the
decoded frame removes blocking artifacts that occur at the borders between neighbouring MBs.

It is important to note that video coding standards aim to ensure interoperability and syntax
capability [SW05] between encoding and decoding sides, andthat all ITU-T and ISO/IEC JTC 1
video coding standards only specify the decoding process. Each specification typically includes
(i) a specification of all data structures and coding elements known to the video standard such as
slices and macroblocks and (ii) algorithmic desriptions ofthe coding tools that can be applied
to the individual data elements. In Sections 3.3 and 3.4, these two essential aspects of modern
video coding standards are explained in more detail.

3.3 Hierarchical structuring of video coding elements

For flexibility and the need to address different coding application requirements, the H.264 video
coding standard specifies aVideo Coding Layer (VCL)and a Network Abstraction Layer (NAL).
While the VCL defines the coding elements that are used for representing the video data in a hi-
erarchical way, the NAL defines how each VCL element (and additional header information)
can be formated into a data representation that is suitable for network transmission. For paral-
lelisation the VCL is of prime importance since data-parallelisation is typically implemented by
parallel processing of multiple VCL coding elements.

Since H.201, the VCLs of all ITU-T and ISO/IEC JTC 1 video coding standards have been
based on block-based hybrid video coding schemes [SW05]. The VCL coding elements defined
in these standards are based on similar hierarchical structures as depicted in Figure 3.3. This
figure shows how H.264 divides each video sequence hierarchically into GOPS(Group of Pic-
tures), frames, slices,macroblocks(MBs) and blocks. A GOP represents a set of consecutive
frames within a video.

Each frame is divided into squared regions of 16x16 pixels, the macroblocks(MB). MBs
form the core coding elements of the H.264 standard and most coding tools are defined in the
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Figure 3.3: The H.264 video standard hierarchically structures the video stream into multiple
layers. It divides the video stream into groups of frames, namely the Group-of-Pictures (GOPs).
Each frame can be divided into multiple slices. A slice can befurther divided into regions of
16×16 pixels, namely the Macroblocks (MBs).

context of MBs. Each video frame can contain one or multipleslices, whereas each slice repre-
sents a region within an image that can be coded independently of the other frame’s slices.

The strong hierarchical structuring of the video content allows processing at various levels
of granularity. The size of the available memories (e.g. external memories, processor caches)
and the requirements on the processing latency typically influence at which level of granularity
the processing effectively can be implemented. Parallelisation often takes place at a MB level
since most architectures can process, transfer and store these blocks of data in an efficient way
and within their architecure’s memory limitations.

3.4 Coding tools

Hybrid video coding standards today use a wide range of advanced coding tools for coding VCL
elements such as MBs efficiently. This section provides a brief description of the most essential
coding tools used in the H.264 video standard. These tools introduce means for removing spatial
and temporal redundancies when representing video contentand enable efficient representation
of VCL elements such as MBs.

3.4.1 Spatial prediction

The concept behind spatial prediction is based on the fact that pixels within the same frame,
especially if spatially close, often poses a high similarity. Spatial techniques can exploit this
similarity and reducespatial redundancy. Spatial prediction provides means for deriving a
pixel’s information from other regions within the same frame. Spatial prediction is often re-
ferred to asintra predictionsince no referring to other frames of the video sequence takes place.
In H.264, a set ofintra prediction modesis provided. Each mode describes a specific pattern
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Figure 3.4: H.264 intra-prediction modes for blocks of (a) 16x16 and (b) 4x4 pixel size.

to derive a MB’s pixels of the border pixels of spatially adjacent MBs (Figure 3.4). For exam-
ple, the pixels of a 16x16 MB can be predicted using one of 4 prediction modes visualised in
Figure 3.4a (Intra16x16). Pixels from neighbouring macroblocks are for example propagated
in a vertical, horizontal or diagonal direction. Apart fromIntra16x16, each MB can be divided
into smaller blocks of 4x4 pixels and predicted with additional prediction patterns visualised in
Figures 3.4b (Intra4x4). While Intra4x4 is more suitable for fine structures, Intra16x16 typically
provides a more efficient coding for large homogeneous regions.

While in previous standards such as H.263 and MPEG-4/ASP intra prediction has been done
in the transform domain (i.e. prediction of frequency coefficients), a paradigm change to intra
prediction in the spatial domain (i.e. prediction of luminance/chrominance pixel information)
has been introduced in H.264.

3.4.2 Motion-compensated prediction

Motion-compensated prediction (MCP) aims to exploit the similarity of consecutive frames
within a video sequence. Changes between consecutive frames are typically caused by object or
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camera movement and the encoder estimates this movement during MCP. Thisinter-prediction
estimates the spatial displacement of each MB between frames and describes this displacement
using motion vectors (MVs). This can be seen in Figure 3.5a. Here, a MB region in the current
frame is predicted based on a region in a reference frame. Using the motion of a MB between
frames can be used for predicting the MB’s pixels. The MV is used as part of the inter-coding
representation of this MB.

An innovative extension of motion compensated prediction has beenbi-directional predic-
tion. This coding tool has been available since MPEG-1 and in all succeeding standards and
enables the use of prediction signals from past and future frames. Bi-directional motion com-
pensation is visualised in Figure 3.5b. Here, the prediction of a MB in the current frame is based
on averaging the MCP signals from previous and future frames.

Newer standards such as H.264 address the obvious fact that motion is typically not the same
for all pixels of a MB by introducingvariable block sizesfor motion prediction and compensa-
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tion. By usingmacroblock partitioning, a MB can be divided into blocks of 8x8 or even down to
4x4 pixels with individual motion vectors for each block. Figure 3.6 visualises the MB partitions
available in H.264. Each MB can divided into smaller blocks of 16x8, 8x16 or 8x8 pixels. Each
MB with 8x8 partitioning can be further partitioned into 8x4, 4x8 and 4x4 blocks. The small
block sizes aim to describe very fine-structured motion efficiently and can increase the coding
efficiency significantly.

Apart from macroblock partitioning to target the motion of fine structures, most VCAs after
H.261 supportsub-pixel accurate motion compensation. The motion of each block is estimated
on a full-, half- or quarter-pixel accurate position, whichenables a more accurate motion repre-
sentation and typically results in a higher coding efficiency. While for MPEG-1, MPEG-2 and
H.263 full- and half-pixel accuracy was provided, new standards such as H.264 provide up to
quarter-pixel precision for MCP.

It should be noted that due to the large amount of temporal redundancy, inter-prediction
typically can achieve a higher compression efficiency than spatial prediction but at the cost of
higher computational complexity.

Slice types

Hybrid video coding frameworks such as H.264 typically provide three ways for coding the
slices of a frame:

1. Intra-coded slices (I-slices): In an I-slice, all MBs of the slice are intra-coded. This
avoids data dependency on MBs of other slices and enables decoding of MBs within I-
Slices independently of other slices. This independence allows the decoder to use I-slices
as entry points into a coded bitstream or for recovering fromtransmission errors.

2. Uni-directional predicted slices (P-slices): For predicting blocks in a P-slice, inter-
prediction between the current frame and areference frameand based on one MCP signal
can be used. In addition, all coding types of I-Slices can be used for coding MBs in
P-slices.

3. Bi-directional predicted slices (B-slices): In addition to all coding types available in
P-slices, inter-prediction based on two MCP signals can be used for predicting MBs in
B-slices.

Depending on the coding of the slices within a frame, the frame is referred to as I-, P- or
B-frame. In terms of coding efficiency, P-frames typically achieve a reduction of 50% in data
rate compared to I-frames. B-frames typically achieve a higher data reduction than P-frames,
but at the costs of higher computational complexity.

Each GOP typically contains a set of I-, P- and B-coded framesand can be decoded inde-
pendently of any previous GOP. The length and the coding structure of a GOP are not specified
by the standards and can be chosen by the encoder. The coding structure is characterised by its
length and the type of prediction used for the individual frames in the GOP. In Figure 3.7, two
different GOP-codings are visualised. Figure 3.7a represents a IP-coded GOP structure with one
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Figure 3.7: Different GOP-codings: Intra (I), predicted (P) and bi-directional predicted (B)
frames are used for coding. (a) IP-Coding, (b) IBBP-Coding:View order and (c) IBBP-Coding:
Coding order. More details on the coding order are provided in Section 3.4.2.

I-frame at the start of each GOP and dependent P-frames afterwards. Figure 3.7b represents a
IBBP-coding where bi-directional B-frames are used withinthe GOP. It should be noted that in
order to use future frames as references in B-frame prediction the coding order must be adapted.
In Figure 3.7c, this reordering of the coding order is visualised. Frames that are used for pre-
diction of other frames are encoded earlier in the bitstream. The decoder has to make sure that
these frames are encoded/decoded in the correct coding order.

Typically, the GOP-coding structure is chosen according tothe video application. Aspects
that typically determine the choice of GOP-coding structure are, for example, compression effi-
ciency, quality, latency and error robustness. For editingand cutting applications, I-frame only
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coding or IP-coding with short GOP sizes is often used. This provides frequent entry points into
the coded bitstreams and enables fast cutting, fast backward/forward and quick previews. For
low-bitrate video conferencing applications, typically higher compression efficiency and low
latency are targeted. For these applictions, longer IP-coded sequences are often used. When
distributing high-resolution video content without the need to meet low latency targets, com-
pression efficient coding orders based on B-frames (e.g. IBBP) are often used.

3.4.3 Transformation and quantisation of residual data

After the prediction, a spectral decomposition of the original residual data is typically done by
all hybrid video coding standards. This transforms pixel residuals into frequency components
and reduces spatial correlation between pixels. It concentrates relevant information in a few
significant transform coefficients that can be represented by a few variables and stored efficiently.
In H.264 spatial transform coding of the residuals is used. In contrast to preceeding coding
standards that have been using 8x8 block transforms, the transformation in H.264 is done on
4x4 blocks. For this transformation, H.264 uses a 2D DCT (2D discrete cosine transform) of the
following form:

H =









1 1 1 1
2 1 −1 −2
1 −1 −1 1
1 −2 2 −1









(3.1)

It should be noted that H.264 uses this exactinteger transformH for the transformation of
4x4 pixel blocks. This transform has the significant advantage that inverse-transformation mis-
match can be avoided. Furthermore, the transformation can be computed using only a combina-
tion of additions, substractions and bit-shifting. These operations can typcially be implemented
efficiently on most hardware architectures.

For quantisation of the resulting transform coefficients, H.264 uses a quantisation param-
eter (QP) with values ranging from 0 to 51. QP controls the quantisation steps and has been
designed in a way that an increase of QP by a factor of six results in approximately the doubling
of the bit rate. The rate control of the encoder selects the QPin such a way that the targeted
bitrates can be achieved.

3.4.4 Deblocking filter

The block-based coding of video content results in visible artifacts at the block boundaries. The
main causes are the block-based MCP and the block transforms, and especially for low-bitrate
applications these artifacts become obvious. H.264 introduces an adaptive in-loop deblocking
filter that reduces blocking artifacts while retaining the sharpness of true edges. For true edges,
the filtering would be turned off while artifical edges shouldbe filtered.

For H.264, the decision whether filtering should be done and which filtering strength is
applied is based on the coding mode of the filtered blocks (e.g. prediction type, number of
residuals, motion strength) and on the pixel samples that are located at the filtering position. In
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Figure 3.8: One-dimensional visualisation of a block edge in a typical situation where the H.264
deblocking filter would be turned on [LJL+03].

Figure 3.8, this sample-based filtering is visualised. Thisone-dimensional visualisation repre-
sents the filtering process across a border of two neighbouring blocks. The border is located
betweenq0 andp0 and four pixels from the left block and four pixels from the right block are
used by the filter for determining the filtering strength. This filtering is done on the vertical as
well as the horizontal borders of each MB.

In [LJL+03], a detailed description of this filter can be found. In thecontext of parallel video
coding it is important to note that the H.264 deblocking filter introduces dependencies between
MBs. Furthermore, the filter is applied after the MCP of a MB and across slice boundaries.
This can generate dependencies between MBs at the border of I-slices and must be considered
in parallel decoding schemes.

3.4.5 Entropy coding

Entropy coding schemes such as Variable-Length Coding (VLC) take advantage of the relative
probabilities of the possible values within our coded videorepresentation and reduce statistical
redundancy. In H.264, two entropy coding algorithms have been included: Context-Adaptive
Variable Length Coding (CAVLC) and Context-Adaptive Binary Arithmetic Coding (CABAC).

The coding of the syntax elements using the CABAC arithmeticcoding scheme is typi-
cally 10-15% more efficient compared to CAVLC [SW05] but computationally more demand-
ing as well. Both algorithms adapt to the data statistics using either context-adaptive mapping
to different VLC tables (CAVLC) or adjusting of probabilityestimates in a context-adaptive
way (CABAC).

3.5 Parallel video decoding

Despite the fact that parallel H.264 decoding has been investigated in a large number of scientific
publications [HJKH03, LHH03, SYT04], parallelisation of this algorithm is highly challenging.
Most of the H.264 coding tools strongly adapt to the video content and come at the cost of strong
variations in the runtime of the decoder [HJKH03, SBSG08]. Furthermore, the coding tools
in H.264 introduce a large number of data-dependencies between the individual VCL coding
elements. For an efficient parallelisation as well as when predicting the runtime behaviour of a
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Figure 3.9: Macroblock dependencies in H.264 decoding. Arrows mean that the macroblock
at the origin of the arrow needs to be processed before decoding the other macroblock. (a)
Intra-prediction dependency. (b) Deblocking filter dependency. (c) Inter-prediction dependency.

parallel H.264 encoder or decoder, these runtime variations and dependencies must be resolved
appropriately.

In previous work, various approaches for parallelizing theH.264 decoding process have
been introduced. Van der Tol et al. [vJG03] have investigated methods for mapping the H.264
decoding process onto multiple cores. Functional splitting of an H.264 decoder and the use of
MB pipelining at thread-level have been demonstrated in [CHC+05, CTGG04, SFLB07]. Zhao
et al. [ZL06] exploit frame parallelism in the Wavefront technique. A hierarchical approach
working at group-of-picture and frame level is demonstrated in [RGM06]. In [LLCW10], a
parallel embedded H.264 decoder processes the video streamon a slice-level. The scalability of
H.264 for a data-parallel decoding approach operating on the MB-level and on multiple frames
in parallel has been investigated by Meenderinck et al. [MAJ+09]. The same study introduces
an efficient technique for H.264 frame-level parallelisation, the 3D-Wave strategy.

These papers primarily focus on parallelisation in terms ofalgorithmic scalability. Upper
limits on the number of processors and frames processed in parallel are given. However, the
memory-restrictions of embedded environments make these approaches hardly usable for mo-
bile and embedded architectures. More resource-efficient H.264 splitting approaches have been
introduced in [SSBG08,SWC07,WPH+03]. The focus of these authors has been put on efficient
decoder implementations for embedded architectures.

In the following, we investigate the dependencies that video coding tools generate between
MBs. This has a major impact on all parallelisation approaches. After this section, we de-
scribe the two fundamental paradigms that parallel video decoder approaches can be based on:
Functional- and data-parallel partitioning.

3.5.1 Dependencies between macroblocks

Partitioning of a video decoder and distributing the MBs’ coding tasks onto multiple PUs is
challenging due to dependencies between spatially as well as temporally neighbouring MBs.
These dependencies originate from three sources as illustrated in Figure 3.9, and are described
as follows.

Firstly, in spatial prediction of the current MB, unfilteredpixel information from up to four
spatially neighbouring MBs is used. These dependencies aredepicted in Figure 3.9a. In gen-
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Figure 3.10: Functional split of an H.264 decoder: Parsing and entropy decoding tasks are
executed on one PU, pixel-based processing tasks such as prediction and deblocking on another
PU.

eral, it is a good option to gather the current MB and its reference MBs on the same PU to
avoid expensive inter-processor communication for resolving this dependency. For an efficient
parallelisation, this dependency must be addressed carefully.

Secondly, the deblocking filter imposes additional spatialdependencies. For filtering the
outer edges of the current MB, up to four pixel rows/columns from the upper and left neigh-
bouring MBs are used as filter input. These MB dependencies are visualised in Figure 3.9b. An
efficient parallelisation method will focus on avoiding these dependencies having to be resolved
across individual processors.

The third MB dependency arises from the inter-prediction. The inter-prediction reads ref-
erence data from MBs of previously decoded frames. Obviously, it is required that processing
of these reference MBs has already been completed before they can be used for inter-prediction
of the current MB. This results in the temporal dependency depicted in Figure 3.9c. In fact, the
current MB can depend on a rather large number of reference MBs. H.264 allows splitting of
the current MB into small sub-blocks, for each of which a separate motion vector is computed.
In P-slices, each inter-coded MB can contain up to 16 motion vectors and point to one reference
frame. For bi-directionally predicted MBs in B-slices, a maximum of 32 motion vectors and two
reference frames is possible.

3.5.2 Functional partitioning

In functionally partitioned decoding systems, the decoding tasks such as parsing, motion com-
pensation or deblocking are executed on individual PUs. Typically, the individual coding tasks
of each MB are processed by one processor after the other. Themultiple PUs allow the next
MB’s decoding tasks to be started before computation of the current MB has finished.

This splitting method has the advantage that each PU can be optimised for a certain task (e.g.
by adding task-specific hardware extensions) and minimal-sized instruction caches. In contrast
to data-dependent parallelisation, also strongly sequential tasks such as entropy decoding can be
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Figure 3.11: The Single-row splitting approach. The assignment of processors to macroblocks
is shown.
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Figure 3.12: Example of the Single-row splitting approach used with two cores. Processed
macroblocks are shown at different instances of timet. It takes a constant value of 1 unit of time
to process a macroblock.

accelerated by this strategy. The disadvantages are typically an unequal workload balancing and
high transfer rates for inter-communication. Figure 3.10 visualises a functionally split H.264
decoder. The parsing and entropy decoding task has been assigned to Processor 2, the pixel-
based processing tasks to Processor 1.

3.5.3 Data-parallel partitioning

As opposed to functional splitting methods, data-parallelsystems do not distribute the functions,
but the macroblocks among multiple PUs. Figure 3.11 illustrates an example of data-parallel
stream decoding. This splitting strategy distributes horizontal lines of macroblocks among dif-
ferent processors. For efficient parallelisation, the MBs’core assignment algorithm has to ad-
dress the following issues:

• The data-dependencies between different PUs must be minimised and data locality must
be exploited (i.e. supporting of caching strategies).

• The MB distribution onto the PUs must achieve an equal workload balancing.

• Generic MB core assignment for different frame sizes must bepossible.

Scalability in parallel systems requires minimal data-dependency between the PUs. A com-
promise between small memory size and data-dependencies can be reached by grouping the
MBs as described in [vJG03]. To support caching strategies at a more global scale, the groups
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of MBs assigned to one core must be aligned closely together in each frame. By introducing
a centralised and constant MB assignment for each frame, this global caching issue can be ad-
dressed efficiently. Additionally, a constant MB assignment allows the parsed MBs to be written
directly to the First-In-First-Out (FIFO) input buffers ofthe PUs executing the corresponding
reconstruction tasks.

However, introducing data-independencies for data-parallel processing support has its lim-
itations. First, increasing the number of independent data-blocks reduces the coding efficiency
since similarities between blocks are not exploited. Second, the encoder does not necessarily use
multiple slices for coding a frame and the availability of slices typically cannot be guaranteed
at the decoder side. Methods for data-parallel processing have been introduced that typically do
not need data-independent blocks. These methods specify a processing order for the data-blocks
that tries to minimize the dependencies between consecutively processed data. An example is
thewavefrontmethod [MAJ+09,SSBG11,SSBG09]. Here, the data is divided into multiplesets
of macroblocks where each set is called awave. Data-dependencies only exist between blocks
from different waves but not between blocks of the same wave.Consequently, blocks in a wave
can be processed in parallel since they only depend on data from previously processed waves.

In the following, we provide examples of the most commonly used data-parallel decoding
approaches.

Single-row approach

To illustrate the Single-row (SR) approach, we give an example with two processors on an
image divided into8× 8 MBs in Figure 3.12. LetN be the number of processors. Processori ∈
{0, · · · , N − 1} is then responsible for decoding theyth row of MBs if y mod N = i. In
this example, we assume that it takes a constant value of1 unit of time to process each MB. It
is, however, important to notice that this is a coarse oversimplification. In real video streams,
there are large variations in the processing times of individual MBs, which makes it difficult
to evaluate the effectivness of a parallelisation approach. In Figure 3.12, only PU1 is able to
decode MBs at timet = 2, since all other MBs are blocked as a consequence of the dependencies
illustrated in Figure 3.9. After the first two MBs of Row1 have been computed, the second core
can start processing the first MB of the second row, since the dependencies for this MB are
now resolved (t = 3). The next interesting event occurs att = 8 when PU1 has finished
the computation of the first row. MBs of the second row have already been computed and
therefore PU1 can start decoding MBs of Row3 that are dependent on their upper neighbours.
At time t = 10 we obtain the same situation as att = 2, where the first core unlocks the second
one. Finally, the whole frame has been decoded att = 34.

The advantage of the Single-row approach lies in its simplicity. It is very easy to split
the frame among the individual processors. There is only a small start delay after which all
processors can effectively work. The potential downside ofthis approach is that there are many
dependencies that need to be resolved across processor assignment borders. This has played no
role in our example where we have assumed constant processing time for each MB. It, however,
will be noticeable for real videos streams that contain MBs of considerably different runtime
characteristics. In fact, each MB processed by corei depends on its upper neighbours that are
processed by a different PUi − 1. If PU i − 1 fails to deliver these MBs at the right time, this
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Figure 3.13: The number of inter-processor dependencies iscrucial for the overall performance
of the multi-core system. Rectangles represent MBs. A MB’s width indicates the required
processing time. Arrows between two MBs mean that processing of the MB which the arrow
points to can only start after the other MB has been decoded. (a) A large number of inter-
processor dependencies slows down the system. (b) Due to thelow amount of inter-processor
dependencies, different running times of individual MBs become averaged out. This should
improve the overall performance.
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Figure 3.14: The Multi-column splitting approach.
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Figure 3.15: Example of the Multi-column splitting approach.

will immediately produce stalls at PUi. This behaviour is shown in Figure 3.13(a). On the other
hand, this strong coupling of PUs can potentially lead to lowbuffer requirements.

Multi-column approach

The Multi-column (MC) splitting strategy divides the frameinto equally-sized columns as shown
in Figure 3.14. Letw denote the width of a multi-column that is typically derivedby dividing
the number of MBs in a row by the number of processors. More formally, letN be the number
of processors. Processori is then responsible for decoding a MB of thexth column if iw ≤
x < (i+1)w. A similar method to partition the image has recently been proposed for the H.264
encoder in [SWC07].

To illustrate the MC approach, we give an example with two processors on an image divided
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Figure 3.16: The Slice-parallel splitting approach.
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Figure 3.17: Example of the Slice-parallel splitting approach in the blocking version.
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Figure 3.18: Example of the Slice-parallel splitting approach in the non-blocking version.

into 8 × 8 MBs in Figure 3.15. In this example, we assume that it takes a constant value of
1 unit of time to process each MB. Processor1 thereby starts processing the first row of MBs
until it hits the border to the MBs assigned to Processor2 (t = 4). Since the dependency for
the leftmost MB of PU2 is now resolved, Processor2 can finish decoding its first MB att = 5.
We obtain a similar situation att = 8. The dependencies of the leftmost MB of the second row
have been resolved, and PU2 can therefore continue its work. Decoding of the frame is finally
completed att = 36.

The basic idea behind using the Multi-column approach is to obtain a looser coupling of
processor dependencies. In fact, the processor assignmentborders are significantly reduced in
comparison to the Single-row approach. One processor has towait for the results of another one
only at the boundary of its multi-column. Within the multi-column, MB dependencies can be
resolved on the same processor. This should lead to reduced inter-processor dependencies and
could therefore improve the overall runtime behaviour of the multi-core system as is depicted in
Figure 3.13(b).
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Slice-parallel approach

The Slice-parallel (SP) is a widely-used splitting approach. It is a 90-degree rotated version of
the Multi-column approach that divides the frame into even-sized rows. This method is depicted
in Figure 3.16. Formally spoken, leth denote the height of a multi-row. A MB of theyth row is
then assigned to PUi if ih ≤ y < (i+ 1)h.

The runtime behaviour of the SP approach is illustrated in Figure 3.17. Here, PU2 has to
wait for a relatively long time (t = 26) until the dependencies for its first assigned MB are
resolved. While the first processor can complete its work on the current frame att = 32, it
still takes 26 units of time until the second PU finishes processing the remainder of the frame
at t = 58. In the following, we refer to this approach as the blocking Slice-parallel technique.

In a recent work [MM08], a non-blocking encoder version of the SP approach has been
presented. The authors encode their video streams so that slice borders coincide with horizontal
lines in the frames. Since neither dependencies introducedby intra-prediction nor dependencies
introduced by the deblocking filter occur across slice borders, the multi-rows can be processed
independently from each other.

Obviously, this non-blocking SP approach (NBSP) requires having full control over the en-
coder, which will not be the case for many applications. For completeness, we also give an
example of this approach in Figure 3.18. Here, both PUs can start processing their assigned
MBs immediately (t = 1) and finish decoding the complete frame att = 32.

Diagonal approach

The Diagonal (DG) approach depicted in Figure 3.19 represents another popular splitting method.
This processor assignment is obtained by dividing the first line of MBs into equally-sized columns.
The assignments for the subsequent lines are then derived byleft-shifting the MB assignments
of the line above. This procedure leads to diagonal patterns.

Figure 3.20 gives an example of the DG approach using two processors. Here, the second
PU stalls until its dependencies become resolved by PU1 at t = 4. The first PU completes
computation of its first image partition att = 10. Unfortunately, it cannot directly start pro-
cessing the second partition, but has to wait for PU2 to resolve dependencies untilt = 12. The
following images (t = {13, 16, 18, 20, 23, 24}) show situations where the first PU has to wait
for MBs decoded by PU2. For legibility, we do not show subsequent states where one processor
blocks the other one, but directly proceed to the final resultderived att = 43.

The Diagonal splitting method is regarded as an approach that “respects” the dependency
patterns spanned by the intra-prediction and the deblocking filter. (Dependencies are shown in
Figure 3.9). We illustrate the idea behind the Diagonal splitting method in Figure 3.21. The
figure compares the inter-processor dependencies introduced by the Diagonal and the Multi-
column splitting techniques. The Diagonal method therefore only shows dependencies on MBs
from its left neighbouring processor, which is in contrast to, for example, the Multi-column
method that contains dependencies on MBs of both neighbouring PUs. These reduced inter-
processor dependencies could lead to an improved runtime behaviour of the multi-core system.
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Figure 3.19: The Diagonal splitting approach.
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Figure 3.20: Example of the Diagonal splitting approach.
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Figure 3.21: Processor dependencies in the Diagonal and Multi-column splitting approaches.
(a) In the Diagonal method, dependencies for PU2 originate solely from MBs assigned to PU1.
PU 2 therefore never has to wait for PU3. (b) In the Multi-column approach, MBs assigned to
PU2 are also dependent on Processor3 as indicated by the dotted arrow.

3.6 Summary

In this chapter, we have described the historical developments of hybrid video coding standards.
We have shown that modern hybrid video coding standards suchas MPEG-4/ASP, H.264 and
VC-1 share strong structural similarities and conceptually similar coding tools. Furthermore,
most hybrid video standards use similar hierarchical coding elements and VCL definitions for
representing video content. Understanding and exploitingthe fundamental architectural of mod-
ern video coding standards plays an essential role when doing VCA runtime analysis. It can
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provide important insights into the runtime behaviour of a VCA at the level where the paral-
lelisation would take place in a functional or data-parallel partitioning. In Section 4, we will
exploit this for analysing the runtime performance of a VCA in relation to its underlying algo-
rithm structure. Section 5 will introduce a framework for describing VCAs in an abstract way
based on the structural similarity of hybrid video coding.

In addition, the current section has described splitting approaches for distributing H.264 de-
coding tasks onto multiple PUs. We have introduced various functional- as well as data-parallel
splitting approaches and outlined the challenges of resolving data-dependencies efficiently in
parallel decoder designs. The runtime performance of the individual VCA partitionings will
strongly vary for different architecture hardware (e.g. number and type of processors, transfer
buffer sizes) and the software implementation of the VCA’s functional blocks. In Section 6, we
will introduce techniques for quickly estimating the runtime of different VCA partitionings at
an early stage of the design process. We will use several of the VCA partitioning approaches
described in the current section in order to demonstrate theproposed techniques.
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CHAPTER 4
Data-driven runtime analysis

In this section, we analyse the runtime behaviour of an existing H.264 decoder running on a
singlecore. By profiling a single-core VCA, important insights forruntime optimisation can be
obtained. Starting from an initial VCA, the developer iteratively profiles the VCA and optimises
the functions with the highest potential for a runtime reduction. While this optimisation on a
functional level is highly efficient for runtime optimisations of single-core VCAs, exploiting
the obtained information when designing a parallel VCA is not straightforward. To address
this stortcoming of functional profiling, we will introducea new analysis technique, the Data-
Driven Profiling (DDP) method. This method represents one key contribution of this thesis and
puts traditional function profilings in the context with theactual VCL coding elements that are
processed during a VCA’s execution. The complexity information derived by DDP provides
insights into data-parallel complexity aspects of a VCA andcan serve as an efficient tool during
parallel VCA design. Compared to an analysis on a functionallevel, it provides capabilities to
investigate the complexity of a VCA at the level where the parallelization takes place (i.e. the
macroblock level for most VCAs).

The chapter is structured in the following way: In Section 4.1, we introduce the concept
behind DDP and explain how traditional function traces can be mapped onto the coding elements
specified by the H.264 coding standard. Section 4.2 describes how DDPs can be derived in an
automatic way. In Section 4.3, we provide an overview of the test environment used in context of
this thesis. We apply the DDP method in Section 4.4 and demonstrate how data-driven profiles
can be analysed before starting a parallel VCA design.

4.1 Data-driven profiling

Traditional dynamic profiles contain information about a VCA’s complexity at a function level
(Chapter 2.2). For each function of the VCA, a complexity statistic based on different metrics
is provided. For example, the mean and average number of processing cycles spent in a specific
function. This information is typically sufficient for single-core optimisation.
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The idea behind DDP is to map the function traces obtained during a VCA’s execution onto
the VCL coding elements. These elements represent the processing levels where the system
designer can introduce parallel processing mechanisms when designing the parallel VCA. In
contrast to a traditional profiling, the VCA runtime can thenbe analysed directly at this level. In
this work, we investigate VCA processing at MB-level since most parallel VCA approaches im-
plement partitioning schemes at this level. However, the methods introduced in this work are not
restricted to MB-level analysis. Depending on the granularity that is most suitable for analysing
a VCA’s dynamic behaviour and integrating parallelisationmechanisms, different VCL coding
elements such as slices or frames can be used.

A first step towards macroblock-based profiling of an H.264 decoder has been taken in [KF05].
The authors determine the frequency of each macroblock coding type when decoding a video
stream. The authors interrelate the runtime complexity with the macroblock frequency. How-
ever, complexity is only investigated at the frame level. Our work extends this idea and provides
a generic framework for a detailed complexity analysis on all hierarchical levels of a VCL (e.g.
MB-, slices-, frame-level). This is essential for making assumptions about parallel VCA imple-
mentations.

This step towards a more data-focused representation of traditional profilings has numerous
advantages: First, the partitioning of the VCA and the distribution of the workload to multiple
processors take place at this level. Runtime effects resulting from varying workload and inter-
communication between PUs must be analysed at this processing level. By carefully addressing
these variations (i.e. by introducing buffers between the processors), we can distribute the data
in a way that results in an efficient usage of the PUs.

Second, by analysing a VCA at VCL-level, complexity can be assigned to specific posi-
tions within a frame and to frames in the video. This enables the system designer to interrelate
complexity with spatial and temporal positions within a video. Based on this information, ef-
ficient load-balancing methods for data-parallel coding solutions where multiple video regions
and frames are processed in parallel could be developed.

Figure 4.1 visualises this concept for a VCA which processesthe video data one MB after
another. Function calls that occur during the processing ofa macroblockMBi can be assigned
to the VCL coding elements (i.e. VCL mapping) within the video stream such as MBs, slices
and frames.

Apart from assigning function calls to specific VCL coding elements, the system designer
can define Functional Blocks (FBs) that represent major coding tasks. Each function is assigned
to a single FBFBj (i.e. mapping to FBs). For example in Figure 4.1, we have chosen 4
FBs (parse, predict, IDCT, deblock) that divide the H.264 decoding process into4 functional
blocks. In the following, we will use the termtaskto refer to the execution of a specific FB of a
MB. Each task has a unique number (task ID) and represents theexecution of all function calls
that have been assigned to this MB’s FB. The computational complexity (e.g. the number of
cycles) of a task is the cumulated complexity of all functioncalls that have been assigned to this
task.

This mapping of function calls to the individual MBs and the classification into FBs can be
done easily for simple VCA structures. For example, let us assume that only a single function
call IntraPredictionrepresents the complete intra prediction FB of each macroblock and that this
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Figure 4.1: Data-driven profiling: The function traces are assigned to VCL coding elements and
further onto functional blocks. In this figure, four FBs havebeen defined: Parse, predict, IDCT
and deblock.

function is called exactly once per MB. If this function is called for every MB, then the process-
ing time for the third invocation of the functionIntraPredictionwill consequently represent the
time that MB3 spends for the FB “intra”. Table 4.1 provides an example of a DDP at MB level.
The function trace information that has been gathered during a traditional dynamic profiling is
mapped onto individual VCL coding elements, decoding FBs and tasks. Each task specifies the
complexity of a MB’s FB.

However, for more complex VCAs, mapping of the function traces to individual FBs and
VCL coding elements is not straightforward. Each FB can consist of a large number of calls to
individual program functions. Each function can be called multiple times, from within different
FBs (i.e. the same function is used by multiple FBs) and at different hierarchy and recursion
levels. Furthermore, the FBs of a VCL coding element do not necessarily occur sequentially.
For example, in many decoder implementations, the deblocking of a frame is done after all the
frame’s MBs have been reconstructed. This makes it challenging to determine the MB a function
call belongs to and, consequently, which task it should be assigned to. We will address this issue
in the next section where we introduce a method for assigningfunction traces to the specific FBs
and MB in an automatic way. This enables the generation of DDPs for highly complex VCAs.

4.2 Automatic generation of data-driven profiles

In this section, we will introduce a method for mapping the function traces to the FBs of a
VCA’s individual MBs. This method is conceptually similar to the idea of pushdown automa-
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Table 4.1: Profile for the tasks of the decoder’s individual functional blocks: The table visualises
the extracted computation time in cycles for each MB and functional block executed during the
VCA’s execution. The execution of a MB’s FB is represented bya task with a unique task ID.

Task #MB FB Complexity
T1 0 parse 8730
T2 0 IDCT 141
T3 0 intra 1057
T4 0 deblock 8711
T5 1 parse 12463
T6 1 IDCT 510
T7 1 intra 701
T8 1 deblock 15734
T9 2 parse 19122
T10 2 IDCT 110
T11 2 intra 1418
T12 2 deblock 13875
.. .. .. ..

q0 q1

1/1

0/1

q2

1/1

0/1

0/0 1/0

Figure 4.2: A state transition diagram of a simple state machine with an initial stateq0 and a final
stateq2. It visualises a state machine consisting of three states and the state transitions. Each
transition has input/output events. The input events determine the conditions that have to be met
for a transition to another state. The output signals specify actions caused by this transition.

tons (PDAs) [Sip97]. PDAs are abstract machines that can describe sequential behaviour in an
formal way. This provides a powerful and intuitive concept to describe the VCL coding ele-
ment structure and the FBs of a VCA in a formal way. After a brief introduction to Finite State
Machines (FSMs) and PDAs, we will explain how we can describecomplex VCA structures
and exploit these formal descriptions for automatic mapping of function traces to specific VCL
coding elements and FBs.

4.2.1 Finite State Machines and Pushdown Automatons

State machines have been used extensively in software design, for example for studying prob-
lems of algorithm computability [WSWW06] and for developing event-driven software design
approaches [WWW04]. State machines are formal models for describing sequential behaviour
in an abstract way. The basic concept of a state machine has been introduced in [Mea55,Moo56].
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Table 4.2: Transition table of the state machine visualisedin Figure 4.2. For each control state
of the machine, the table specifies transition rules (one rule per table row). In this example,
the machine consists of three statesq0, q1 andq2. Each rule specifies which input transfers the
machine from the current state into another state. Furthermore, the rule determines the output
caused by this transition.

Condition Effect
Current state Input Next state Output

q0 0 q0 0
q0 1 q1 1
q1 0 q0 1
q1 1 q2 1
q2 0 q1 1
q2 1 q2 0

State machines assume that a system is in one of multiple possible statesand that the conditions
for changing into another state can be expressed in a formal way. Starting from aninitial state,
the fulfilling of certain conditions triggers the transition to another state (i.e.state transition).
Each condition is associated with an input event. A condition is met when this input event oc-
curs. If there is only one possible transition for each inputevent of a state, the state machine is
calleddeterministic.

Figure 4.2 visualises a simple state machine using astate transition diagram. Such a state
machine with a finite number of states is called a FSM. For eachstate, specific input events can
trigger transitions from the current state to another stateof the FSM. In addition, for each state
transition, output events can be specified.

Another common way to describe FSMs is atransition table. Table 4.2 defines the transition
table for the state machine of Figure 4.2. A transition tablecontains all statesq1..|Q| ∈ Q of the
FSM. For each stateqi, the possible input eventsx1..|Xi| ∈ Xi are defined. Each input eventxj
results in a transitionyj : qi → qi+1 from the current stateqi to another stateqi+1. Note, that for
simplicity only simple input events have been used in Table 4.2. In practice, also complex input
events triggered by multiple conditions are possible.

In comparison to FSMs, a PDA employs a stack in addition to states and represents a more
powerful type of abstract machine than FSMs. The PDA can push/pop tokens to/from this stack.
Compared to FSMs, this stack enables PDAs to exploit information from previous states since
each transition condition can consider the current input event, the current state and tokens on the
stack.

4.2.2 Mapping profiling information to VCL and functional bl ocks

In order to process function traces in an automatic way, a formal description of the profiling
data is necessary. We use an abstract machine with multiple states for representing the structure
of a VCA and a call/return stack. Each state either represents the processing of a VCL coding
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Figure 4.3: An example of a state transition diagram for an H.264 decoder. The states represent
the processing of individual layers of the VCL (bright grey)and FBs (dark grey). Function calls
and returns can trigger transitions between states. Furthermore, a call/return stack enables us
to consider also information from previous states in transition conditions. Note that this is a
simplified version of an H.264 decoder. Typically, the statemachine contains individual states
for the different macroblock types such as intra- and inter-coded macroblocks. This allows us to
distinguish between the individual decoding functions of different macroblock types.

element or of one of its FBs. Every time this VCL coding element or this FB is processed during
the VCA’s execution, the state machine goes into the corresponding state. Figure 4.3 visualises
the state transition diagram of an H.264 decoder implementation. The state machine consists of
initial/end states, states for representing the decoding process of VCL coding elements (bright
grey) and states for representing the FBs of each VCL coding element (dark grey). Note that the
designer can choose VCL elements and FBs of the H.264 decoderthat he considers most suitable
for his VCA parallelisation strategy. We use the functionaltraces for defining the input events.
Depending on the current state, the occurence of a specific function call/return and the tokens on
the stack can trigger the transition to another state. For simplicity, in this example a transition
from one state to another state can only be triggered by a single input event. In practice, more
complex VCA structures with function sharing between FBs, nested function calls, recursions
and complex function hierarchies can be addressed by this method. The usage of a call/return
stack and transition condition that can access all tokens onthe stack enables us to determine
state transitions in a deterministic way.

For each state transition, the specific time when this transition occurred can be retrieved from
the function traces. Whenever a return state transition to aprevious state is invoked in a stateqi,
the time difference between entering the stateqi and leaving it can be retrieved. This time
represents the processing time that can be assigned to a particular task using the assignment
described before. The total duration of a task can be retrieved by summing the times of all
function calls that are associated with this task. We refer to this cumulative time as the task’s
complexity(Column6 in Table 4.3).

Apart from assigning function traces to FBs, we can map FBs toindividual VCL coding
elements. Note that in the state machine in Figure 4.3, also states for the decoding of individual
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Table 4.3: Macroblock-based H.264 profile information: Thetable visualises the information
that has been extracted from a function trace. Each functioncall retrieved in the function trace
is assigned to a task. Each task represents a unique FB of a MB.By summing up the complexity
of all function calls assigned to a task, its complexity can be retrieved. Furthermore, coding
information such as the coding type and mode for each MB can beextracted from the function
traces and via instrumentation.

Trace information Macroblock-assigned profiling information
Function call Instr. Task #MB FB Complexity MB Coding Information

in Cycles Type Mode ..
parse(..) - T1 0 parse 8730 - - ..
IDCT(..) - T2 0 IDCT 141 - - ..
intra16x16(..) 0 T3 0 intra 1057 intra16x16 0 ..
deblock(..) - T4 0 deblock 8711 - - ..
parse(..) - T5 1 parse 12463 - - ..
IDCT() - T6 1 IDCT 510 - - ..
intra4x4(..) 1 T7 1 intra 701 intra4x4 1 ..
deblock(..) - T8 1 deblock 15734 - - ..
parse(..) - T9 2 parse 19122 - - ..
IDCT() - T10 2 IDCT 110 - - ..
intra16x16(..) 0 T11 2 intra 1418 intra16x16 0 ..
deblock(..) - T12 2 deblock 13875 - - ..
.. .. .. .. .. .. .. .. ..

macroblocks and slices have been introduced. This enables us to determine how often the state
machine has been in the MB decoding state. Every time this state is entered, a counter specifying
the current MB number is updated. This enables us to assign each function call to a specific MB
and all VCL coding elements which this MB is part of.

4.2.3 Extraction of coding information via function names

In addition to retrieving complexity information, we can also retrieve more VCA-specific infor-
mation and assign it to the VCL coding elements and decoding tasks. For example, if individual
function names indicate the type of prediction used for decoding a MB, these function names can
be used for determining each MB’s coding type (e.g. a function “decode_intra16x16” for MBs
with “intra16x16” prediction). The complexity information of a task can be set in the context to
the coding tools applied in this task. Table 4.3 provides an example. The retrieved MB coding
type (Column7) for each “intra” prediction task is extracted via the function name (Column1).
A call to a function with name “Intra16x16” indicates that the MB is intra-coded and uses intra
prediction for a whole 16x16 pixel block.
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4.2.4 Extraction of coding information via instrumentation

In addition to retrieving coding information via the function name, we can also use instrumen-
tation to provide additional information about a VCA’s runtime behaviour. In our system, the
system designer can embed instrumentation instructions inthe VCA’s reference code and derive
essential coding information as part of the function trace.Compared to extracting coding infor-
mation via function names (Section 4.2.3), exploiting instrumentation has two advantages. First,
the system designer can gain information about a VCA’s algorithmic internals that would not be
retrievable by observing the function calls/returns that occurred during the VCA’s execution. For
example, let us assume that there is only one function for intra decoding of a MB. A designer
can only infer that the MB is intra-coded but could not gain information about, for example, the
coding mode that is used for that specific MB. Second, we can retrieve complex information
such as the data-dependencies between VCL coding elements from within the VCA. In partic-
ular, in order to estimate the execution behaviour of parallel application, knowledge about the
data-dependencies is important.

4.2.5 Implementation

We implemented a library using thePerl scripting language [Wal00]. This language provides
a powerful text parsing functionality and is available for most operating systems. The library
which we will refer to as the data-driven profiling library (DDPL) generates a DDP in the fol-
lowing way: First, the user describes the VCA structure using the functions provided by the
DDPL. The DDPL automatically generates an state machine anda corresponding parser that
can map function traces via this state machine definition. Second, the designer provides the
function trace information retrieved with a conventional profiler to the DDPL. Third, the DDPL
remaps the profiling information into a DDP using the VCA’s abstract state machine description.

Definition of a state machine

The DDPL provides simple functions for defining a set of states. Each state has an unique
identifier (UID) and a set of transitions that are associatedwith this state. The user defines
a transition by specifying the source and destination states of this transition and the function
names that can trigger a transition between these states.

For each transition, one or multiple functions can be defined. These function remap the
function trace profiling information when a transition occurs. Each time a transition is triggered
by a function call/return, these functions are able to extract profiling information from the func-
tion traces and update the DDP correspondingly. The DDPL provides functions that support
this extraction process in an intuitive and efficient way. For example, the time between entering
and exiting a state can be retrieved. Furthermore, each transition function can create custom en-
tries in the DDP for storing data-specific information. For example, an “intra” state’s transition
function can create an entry “coding” for a specific task and store the MB coding mode.
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Mapping of function traces

After describing the VCA, the user has to provide the function trace profile to the DDPL. The
function traces/instrumentation messages are either transferred directly from the profiled appli-
cation’s process to the DDPL’s process via process pipelines or stored into a text file before being
passed on to the DDPL process. Using the state machine description, the DDPL reformats all
profiling information into a DDP representation and stores it into a database. This database con-
tains a detailed information about the tasks that occur during the VCA’s execution and provides
a powerful starting point for analysing a VCA’s complexity.

Merging of multiple DDPs

One drawback of using means of instrumentation is that the additional instructions used for
generating profiling information can affect the runtime behaviour of the profiled application.
The DDPL addresses this issue by providing tools for mergingmultiple DDPs. We can generate
(i) a DDP based on function traces and (ii) an instrumentation-based DDP for extracting coding
information separately and merge these profiles into a single DDP. The user can select which
information shall be used from each individual DDP. The DDPLuses the tasks’ UIDs, which are
the same in both DDPs, for merging the selected sources. By using the complexity information
from the DDP that has been generated without instrumentation, unbiased complexity profiling
can be used in combination with detailed coding informationderived by instrumentation.

4.3 Profiling environment and test sequences

In this section we describe the profiling environment that isused in this thesis. We generate a
conventional profile using function traces and instrumentation. In the next section, we use the
state machine definition shown in Figure 4.3 to generate a DDPfrom this information.

4.3.1 Reference architecture

All the profiling results presented in this work are based on an embedded video processing
architecture. This reference architecture targets the efficient processing of audio- and video-
based multimedia applications and represents a typical embedded platform used for video coding
purposes. This should enable the reader to transfer resultsand conclusions of this thesis to other
hardware platforms.

Hardware platform

Figure 4.4 visualises the SoC architecture that has been used throughout this work. The SVENm
multimedia platform [SBG08] consists of two very long instruction word (VLIW) video proces-
sors named CHILIs, an ARM9 processor and a display content controller (DCC). All processors
run at 300 MHz and can execute independent program code in parallel.

The CHILI is a RISC (i.e. Reduced Instruction Set Computer) processor that can process
four instructions in parallel which can be any combination of 32-bit arithmetic instructions and
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Figure 4.4: The structure of the SVENm architecture. The SVENm consists of two VLIW video
processors named CHILIs, an ARM processor and a display content controller (DCC).

load-store operations. For parallel pixel operations, 16-bit SIMD (i.e. single instruction multiple
data) instructions are provided. Each processor has a dedicated 64 kilobyte (kB) local memory
for fast data access and a 64 kB instruction cache. Data is transferred by a direct memory
access (DMA) controller or via direct memory access betweenthe processor’s local memory
and 64 kB on-chip shared random-access memory (SRAM) as wellas to the external mobile
double data rate memory (mDDR). For efficient program execution, each CHILI uses a 64 kB
instruction cache (ICACHE).

While the CHILI as a VLIW processor is designed for computationally intensive video pro-
cessing tasks, the ARM9 processor architecture is more suitable for executing conditional code
(e.g. the multiplexing of transport streams (TS)). For multi-core applications, the ARM9 can be
used for controlling the communication and synchronisation between the individual processors.

A display content controller (DCC) handles the displaying of the video information on dis-
plays. It supports important displaying functions such as video scaling, color space conversion
and buffered/unbuffered display output. A DMA controller supports the efficient data-fetching
and transferring between the processors’ and controller’slocal memories/buffers and the external
memories.

H.264 decoder software

For this analysis, a commercial H.264/AVC decoder for embedded architectures has been adapted
to this platform. This decoder supports all features of the H.264/AVC Main Profile such as B-
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frames and CABAC entropy coding. We started with a single-core C implementation of the
H.264 decoder running on a PC platform. The decoder has been compiled to run on a single
CHILI processor and been optimised in terms of memory usage and support of DMA transfers.
Furthermore, the regular pixel-based processing functions of the decoder (e.g., interpolation,
prediction) have been optimised at a low-level programminglanguage level to make use of the
SIMD processor commands. Intrinsic functions provided by the CHILI compiler have been used
for integrating assembly code instructions within the decoder software’s C code.

Decoder profiling on SVENm

For generating traces of the H.264 decoder on the SVENm reference hardware, a single-core ISS
for the SVENm architecture is available. The simulator mimics the hardware behaviour of the
processors and memories on the SVENm platform and enables cycle-accurate software runtime
profiling on this architecture. We have extended the ISS to provide the time of each function
call and each function return that has occurred during the execution of the H.264 decoder (Fig-
ure 4.1). Note that in this work we have used the CHILI profilerfor obtaining this information.
Nevertheless, this is no restriction of our approach, sinceprofilers for other platforms are, in
general, also able to provide this trace information.

Apart from function trace information, we have also instrumented our H.264 decoder to pro-
vide information on the coding process of the individual MBs(e.g. prediction type and modes).
This information is extracted (i.e. profiled) and stored separately from the complexity profiling
information and hence, does not alter the accuracy of the profiled complexity information.
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4.3.2 Test sequences

To analyse our decoder, we have selected 16 HD video sequences from the Xiph.org test media
website [Xip13]. The sequences are visualised in Figure 4.6. More details on the individual
test sequences are provided in Appendix A. In compiling thistest set, we aimed to reach a
high diversity in the test sequences’ contents and to cover the whole complexity range of typical
H.264 sequences. In our test sequences, the recorded scenesvary in the amount of motion,
texturedness and motion patterns. This results in strong variations in the sequences’ bitrates and
the applied coding tools, and enables a detailed analysis ofthe decoder’s runtime behaviour for
these scenarios.

All sequences are in progressive format with 720p resolution (i.e. 1280×720 pixels) and
have a length of 49 frames. For encoding the test streams, we enabled the most commonly used
coding tools supported in the main profile of the H.264 standard. With the exception of interlaced
coding, all main profile coding tools such as I-, P- and B-slices as well as weighted prediction are
supported. The test sequences are encoded using the JM12.2 encoder [Joi13] with parameters
chosen as follows: H.264 main profile, 720p, GOP size 12 frames, IPB, VLC, deblocking active,
all prediction modes allowed, SR +/–16 pixels, 5 reference frames. Figure 4.7a and 4.7b show
the displaying and the coding order of the first 25 frames of anIPB-coded sequence when using
a GOP size of 12 frames, respectively. We describe the codingof the test sequences in detail in
the following sections.

Image quality metric

In this work, we use the Peak Signal-to-Noise Ratio (PSNR) for measuring the image quality.
The PSNR is defined by the Mean Squared Error (MSE) between theoriginal frameIorig and
the decompressed frameIdecode. The MSE is defined in the following way:

MSE =
1

xy

x
∑

i=1

y
∑

j=1

‖Iorig(i, j) − Idecode(i, j)‖ (4.1)

In this equation,x andy represent the width and the hight of the image, respectively. The ab-
solute differences between pixelsIorig(i, j) in the original frame and pixelsIdecode(i, j) in the
decompressed frame are summed up. The indicesi andj specify the horizontal and vertical po-
sitions within the frame, respectively. The MSE computes the average pixel difference occurring
in a frame. Using the MSE, the PSNR is defined as:

PSNR = 10 · log10
(

MAX2
I

MSE

)

= 20 · log10
(

MAXI√
MSE

)

(4.2)

whereMAXI denotes the maximum possible signal value (i.e. in the case of 8-bit RGB
pixel values,255). The PSNR is measured in decibels (dB) and typically rangesbetween20
and40 dB.

Since the human eye is more sensitive to brightness/intensity than to color, only the PSNR
between the luma channels (Y-PSNR) is typically used for quality comparison. Hence, in the
extent of this thesis the term “PSNR” always refers to the Y-PSNR value.
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Figure 4.6: The 16 test sequences used in work. We use these sequences for analysing the
runtime behaviour of an H.264 decoder. Furthermore, we evaluate the high-level simulation
methodology developed in this work using this test set.

A video encoder typically adjusts the coding process to address specific requirements or
limitations targeted by the different applications. This enables, for example, specific bandwidth
limitations, visual quality requirements or transmissionlatency limits to be met.

For evaluating the complexity estimation techniques proposed in the extent of this thesis, the
test sequences must enable the analysis of the decoder’s runtime behaviour over a wide range of
complexity scenarios and for different coding tools. One prime parameter of the test sequences
that affects decoding complexity in a significant way is the video stream’s bitrate. The higher
the bitrate of the coded video stream, the higher the number of video coding elements that must
be processed by the decoder and hence the higher the decoder’s runtime complexity. Hence, one
prime focus when generating the test sequences for this thesis was to represent a wide range of
test streams with different bitrates.

It should be noted that the amount of texturedness and motionwithin the scene strongly influ-
ences the bitrate, and thus multiple sequences coded with the same quantisation parameter (QP)
settings do not necessarily have the same PSNR quality. For enabling a better comparison be-
tween test sequences and their runtime complexity at the decoder, we have chosen a QP setup for
each sequence that achieves a constant PSNR quality of40 dB. We have adjusted the values of
the quantisation parameters QPI, QPP and QPB that are responsible for quantisation of I-, P- and
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Figure 4.7: GOP-Coding of an IPB-coded sequence with 25 frames and a GOP size of 12 frames:
(a) IPB-Coding: View order and (b) IPB-Coding: Coding order.

B-frames, respectively, so that each individual frame of the sequence exhibits a PSNR of approx-
imately40 dB. On one hand this enforces video coding at a constant and high quality of40 dB.
On the other hand, bitrates variations due to different content will still occur. In the following,
we will describe this normalization of the PSNR quality and resulting bitrates in detail.

Normalised and average bitrates

In this thesis, we use the normalised bitrater and the average bitrateR for data rate comparison.
The normalised bitrater of a video stream describes the average number of bits used for storing
a pixel in a compressed video file. The normalised bitrater is calculated in the following way:

r =
b

x ∗ y ∗N bits/pixel (4.3)

In this equation,b refers to the file size,x andy to the frame width and height, respectively,
andN to the number of frames stored in this file.

The average bitrateR refers to the average number of bits used for storing a secondof video
material. It is calculated by dividing the file sizeb by the timet (in seconds) of the video:

R =
b

t
bits/second =

r ∗ x ∗ y ∗N
t

bits/second (4.4)

We can observe that the average bitrateR can be derived from the normalised bitrater. In the
following, the term “Bitrate” always refers to the average bitrateR.

Coding and bitrates of the test sequences

At a Y-PSNR of approximately40 dB, the test sequences have average bitrates between 1.8
and 57.7 MBit/s (Figure 4.8). The bitrate is an indicator forthe amount of texture and motion
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Figure 4.8: Bitrates for the 16 test sequences at a Y-PSNR of 40 db.

occurring in a sequence. The corresponding settings for thequantisation parameters for the first
25 frames of each test sequence as well as resulting bitratesfor each individual frame are found
in Table 4.4. The sequences are sorted according to their average bitrateR.

In the sequences with low bitrates such as “Sunflower”, “Station2”, “Bluesky” and “Pedes-
trian”, intra-coded frames are causing most of the total filesize b. These sequences contain
simple texture patterns such as the blue sky in the “Bluesky”sequence and inter-coded frames
can be coded highly efficiently. For example for the “Bluesky” sequence, this results in low
average bitrates of2.3 MBit/s (Figure 4.8) and constant and low bitrates of around500, 100 and
50 KBits for I-, P- and B-frames, respectively.

In the “Riverbed” sequence, high and similar data rates can be observed for P- and B-frames.
Despite the fact that the sequence contains little texture,the motion prediction fails to efficiently
predict the complex water flow. This results in a high number of intra-coded MBs in inter-coded
frames as well as a high number of residuals for inter-coded MBs.

“Shields” and “Stockholm” are both moderately textured. The horizontal movement in the
“Shields” sequence as well as the zooming operation of the camera in the “Stockholm” sequence
result in a slightly higher motion activity than in the “Bus”sequence. The higher texturedness
and motion activity for the “Shields” and “Stockholm” sequences lead to bitrates of 18.8 and
25.6 MBit/s, respectively.

“Parkjoy” and “Parkrun” are the two sequences with the highest average bitrates in our
testset. In the “Parkjoy” sequence, the fast moving trees (motion > 32 pixels for some parts) in
the foreground result in bad results for the motion prediction and frequent temporal occlusions
of the strongly textured background. The encoder uses data-intensive intra-coded macroblocks
for these blocks which also explains the high bitrate and frame sizes for this sequence. For the
“Parkrun” sequence, the fine structures of the trees and aliasing effects result in a bad prediction
and high residual information in this region. The background in the “Parkrun” sequence contains
strong texture patterns and a strong horizontal motion withvarious temporal occlusions. This
leads to the highest bitrate in our test set (50.8 MBit/s).

Despite similar PSNR values for all the sequences, strong variations in the bitrates can be ob-
served. In the next section, we exploit information available in DDPs for analysing the decoding
complexity for these sequences at a MB-level.
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Table 4.4: Detailed size and quantisation values for the first 25 frames of each test sequence. For
the first two GOPs of each sequence, the size of the encoded frames and the used quantisation
value (QP) are shown. The frames are provided in coding orderand the horizontal axis represents
the frame index. All I-frames are highlighted as black bars.
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4.4 Experimental results for runtime analysis and visualization

This section provides functional runtime profilings results for the H.264 decoder running on the
reference architecture described in Section 4.3.1. One major aim is to gain information about the
complexity and the dynamic runtime variations for the majorblocks of the H.264 decoder for
the 16 test sequences. Using the dynamic profiler for our reference architecture, we can extract
detailed information about the runtime complexity of the H.264 decoder’s individual MBs.

4.4.1 Complexity of processing VCL coding elements

The information obtained from DDPs enables us to interrelate runtime complexity with the
decoding process of individual VCL coding elements. This isessential when designing data-
parallel partitioning approaches, since differences in the decoding complexity of individual VCL
coding elements affect the efficiency when distributing theworkload onto multiple cores and,
consequently, the overall runtime. Furthermore, it determines the need for buffers for compen-
sating workload differences.

Table 4.5 provides an example of a MB-based DDP complexity profiling. For all frames of
the individual test sequences, the complexity for processing MBs has been extracted. The figure
provides the average, minimum and maximum processing complexity of the MBs decoded in
the respective frames. Furthermore, the standard deviation of the MBs’ decoding complexity is
visualised by the red lines.

We can see that the average complexity for processing a MB in all sequences is similar
between I- and P-frames, but higher for B-frames. We can observe that the complexity of se-
quences such as the “Bus”, “Parkjoy”, “Parkrun” and “Crowdrun” shows constant standard de-
viations throughout all frames and for different frame types. The “Riverbed” sequence posesses
a very low variation in complexity and shows nearly the same runtime complexity for I-, P- and
B-frames. In contrast to this, low-bitrate sequences such as “Sunflower” and “Station2” show
stronger variations in the complexity between different frame types. Especially within B-frames
a strong variation between MB decoding complexity seems to exist. In a data-parallel VCA
implementation that works on a slice or frame level, variations in the decoding complexity will
probably affect the parallelisation efficiency strongest when decoding low-bitrate sequences.

Looking at the minimum and maximum complexity (black lines), we can see that throughout
all sequences MBs with the lowest/highest complexity occurduring the decoding of B-frames.
These MBs with exceptionally high runtime will - similar to the already observed variations
- affect the performance when decoding B-frames in a data-parallel way and result in a less
efficient load balancing or/and the need for larger memory buffers to compensate complexity
variations.

Figure 4.9 provides more detailed information on the MBs’ decoding complexity for the
individual MBs. The complexity distributions shown in thisfigure outline that the decoding
complexity of individual macroblocks increases with higher bitrates for all sequences. The im-
portant point in Figure 4.9, however, lies in the dynamic behaviour of macroblocks. It can be
clearly seen that cycle counts are very different among individual macroblock coding types and
video sequences. As is also shown in the figure, this observation can still be made when consid-
ering the classes of I-, B- and P-macroblocks alone.
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Table 4.5: The decoding complexity of each macroblock varies significantly during the de-
coding. The blue line in each sequence plot shows the averageof the macroblocks’ decoding
complexity in clock cycles for each frame (i.e. 3600 macroblocks). Additionally, the standard
deviation and the minimum/maximum macroblock decoding complexity for each frame are in-
dicated by the red and black lines, respectively. Frames1, 12 and24 are I-frames, Frames3, 5,
7, 9, 11, 14, 16, 18, 20, 22 and24 are B-frames and the remaining frames are P-frames.
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Figure 4.9: Dynamic variations in the execution times of theindividual macroblocks in the
H.264 decoding process. Histogram bins plot the number of macroblocks having similar run-
times. The colours indicate the contributions of macroblocks from I-, P- and B-slices to the
overall bin counts. Histograms are shown for 25 frames of thesequences in Table 4.6. These
sequences are IPB coded with the Group of Pictures (GOP) sizebeing 11. It is observed that the
runtimes of macroblocks vary considerably within a sequence. This observation is also made
when considering I-, P- and B-macroblocks separately.
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For low-bitrate sequences such as “Sunflower’, “Rushhour” and “Bluesky’, we can see in
the complexity distribution of each sequence a clustered group of low-complexity MBs and a
peak around approximately 40000 cycles. This peak corresponds to the variations observed
in Section 4.4.1 and represents MBs coded by 16x16 prediction modes with large amounts of
residual information. The parsing of this residual information accounts for most of these MBs’
decoding complexity and results in similar computational complexity amongst all coding types.
For higher bitrates, the peaks within the distributions disappear and other prediction modes (e.g.
based on 4x4 blocks) are more intensively used.

4.4.2 Complexity of processing functional blocks

Figure 4.10 shows the average and the standard deviation of the runtime complexity the individ-
ual decoding functions require for processing a MB. We have grouped the decoding functions
into the FBs of Figure 3.2. The entropy decoding is thereby merged with the parsing block, since
these functions are tightly connected during runtime.

For most sequences, only a small part of the runtime is spent on the IDCT and the prediction.
The main reason for this is that the regular pixel-based operations such as inverse transformation,
spatial and temporal pixel prediction are well supported bythe CHILI processor architecture.
The SIMD instructions in combination with the VLIW architecture allow the processing of 8
image pixels in one clock cycle. In combination with DMA transfers and fast pixel data transfers,
the pixel-based operations can be tackled efficiently.

However, conditional code execution does not benefit significantly from the VLIW/SIMD
architecture. Highly conditional parts of the H.264 such asthe entropy coding and deblocking
therefore do not perform well. This can be seen in the profiling results. For all sequences, most
of the decoding time is used for parsing (i.e. bit parsing andentropy coding) and deblocking.

We can see in Figure 4.10 that the average runtime for parsingis correlated with the se-
quences’ bitrates visualised in Figure 4.8. For sequences with high bitrates such as Stockholm
and Parkrun, the average runtime for the entropy decoding issignificantly higher than for low-
bitrate sequences. For example, between the “Sunflower” sequence with an average bitrate of
1.8 MBit/s and the “Parkrun” sequence with an average bitrate of57.7 MBit/s an increase in
runtime by a factor of6 (i.e. 5000 cycles compared to30000 cycles per MB) can be observed.

Variations in the execution times of the decoding functionswill result in a highly dynamic
system when developing parallel decoders and will impact the parallel execution of the H.264
decoder. The variations in the runtime become visible when analysing the standard deviation in
the decoder’s runtime profilings. We can see that for all major functional blocks of the decoder,
runtime variations occur. Especially, the entropy coding and the deblocking are highly sensitive
to the bitrate of input data. The bitrate has significant impact on the complexity of these decoding
blocks. For sequences with high bitrates, we can observe significant runtime variation for the
parser functions. For example, the average runtime per MB for the “Parkrun” sequence with
57.7 MBit/s shows variations of +/-20000 cycles/MB. Compared tothis, significantly smaller
runtime variations of approximately1600 cycles/MB are observed for the “Sunflow” sequence
with 1.8 MBit/s average bitrate.

For pixel-based decoder blocks such as IDCT and prediction,small runtime variations can be
observed. However, we can see that in relation to the averageruntime, these runtime variations
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Figure 4.10: Dynamic variations in the execution times of the individual decoding functions in
the H.264 decoding process. The decoder is divided into five functional blocks, namely parsing,
inverse DCT, intra prediction, inter prediction and deblocking. The bars plot mean complexity
and standard deviation for each of the decoding blocks. It isobserved that runtime complexities
of individual decoding functions considerably vary withina sequence due to different runtime
behaviour of individual macroblocks.
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can become relatively strong for high-bitrate sequences such as the “Riverbed” and “Duckstake-
off”. For example, the runtime of the “Riverbed” sequence’sIntra block shows a standard devi-
ation of approximately60 percent of the average runtime (i.e.1000/4000 cycles/MB compared
to 2500 cycles/MB average runtime).

The knowledge about the average runtime and runtime variations of an H.264 decoder pro-
vides us with means for roughly estimating the decoder’s suitability for running on multiple
cores. However, estimating the runtime of a partitioned decoder based on the dynamic profil-
ings is not straightforward. An extended profiling method that provides more suitable means for
multi-core runtime estimation is introduced in the next section.

4.4.3 Analysing complexity within individual subregions of a frame

We have seen in Section 3.5.3 that data-parallel VCA splitting partitions the processing tasks by
assigning subregions of a frame to different PUs. By analysing the coding information available
within the DDPs, the coding complexity of individual subregions of a frame can be derived.
An example of how coding information can be interrelated with the runtime complexity is pro-
vided in Figure 4.11. This figure visualises the MBs’ decoding complexity for3 frames of the
“Parkjoy” sequence. It should be noted that in Figure 4.11, coding information about the po-
sition of each MB within each frame has been extracted. For each MB, the bitrate, the total
runtime, the runtime for parser, IDCT, prediction and deblocking FBs are visualised. The com-
plexity has been normalised and white represents regions with high complexity and black with
low complexity. We can see that most of the total runtime in I-, P- and B-frames is used for
decoding the bright and textured regions in the background (e.g. trees). For frame regions with
a high bitrate, a high runtime in the parser FB and a high totalruntime can be observed. This
indicates that the parsing FB’s complexity highly correlates with the image structure.

The IDCT FB shows an interesting behaviour amongst I-, P- andB-frames. While for I-
frames nearly the same time is required for the IDCT FB of all MBs of the frame, stronger
differences between individual regions can be observed forP- and B-frames. In the P- and
B-frames, strong differences between low textured regionsand highly-textured regions can be
observed.

In I-frames, the prediction of textured regions requires significantly more runtime than for
untextured regions. This results from the strong complexity differences between the individ-
ual intra prediction modes. In B-frames, the runtimes are similar between the frame’s MBs.
However, a few MBs with high complexity occur in the texturedregions while a slightly lower
runtime can be observed in the untextured regions. In P-frames, a moderate runtime is spent for
the textured regions in the background while little runtimeis required for the untextured regions
in the foreground. Single MBs within the frame with very highruntime can be observed.

Apart from the top and left border, the deblocking filter’s complexity shows a very uniform
complexity distribution for the I-frame. In the P-frame most of the runtime is spent on filtering
the textured areas of the frame. This is in contrast to the B-frames where a high runtime is
dedicated to processing untextured regions.
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Figure 4.11: The runtime complexity for individual MBs of I/P/B-frames: For each frame, the
bitrate, total runtime complexity and the complexity of parser, IDCT, prediction and deblocking
FBs for each MB are visualised. Bright pixels indicate regions with a high bitrate/computational
complexity. Dark values macroblocks with a low bitrate/decoding time.
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4.5 Summary

In this chapter, we have introduced the Data-Driven Profiling method which maps traditional
runtime profiling information onto the VCL coding elements and functional blocks of a VCA.
This provides means for estimating a parallel VCA’s complexity behaviour and for parallel VCA
designing and enables the system designer to investigate critical aspects such as variations in the
processing time of each coding element and individual functional blocks of the VCA. Further-
more, it enables the extraction of VCA-specific coding information such as the coding tools used
when processing specific VCL coding elements.

After describing the test setup used throughout this thesis, we have demonstrated three ways
of exploiting DDPs for analysing complexity and deriving essential information for parallel
system design. First, we have demonstrated how complexity information about the processed
VCL coding elements can already highlight potential problems in load-balancing for frame-
and slice-based data-parallel approaches at an early design stage. Second, we have shown how
complexity variations in the FBs of a VCA can be analysed. This provides a starting point for
implementing functional partitioning techniques. For demonstrating the above contributions, we
have exploited runtime profilings of an H.264 decoder to analyse the dynamic runtime variations
in the decoder’s functional blocks. We have shown that the runtime as well as the runtime
variations for the individual H.264 decoder blocks increase with the bitrate. Decoding blocks
with a large amount of conditional code such as the entropy decoding and the deblocking are
more sensitive to bitrate changes than pixel-based blocks.Third, we have extracted coding
information which determines the progam flow of a VCA and exploited this information to
determine the processing time for individual image regions. Similar to the complexity analysis
for VCL coding elements, these insights support the design of efficient data-parallel partitioning
approaches.

Overall, the capability to analyse and visualise the runtime complexity of VCL coding ele-
ments and functional blocks provides an essential tool for parallel VCA design and when target-
ing an equal workload distribution in data-parallel and functional-partitioned designs. We will
exploit DDPs in Chapter 5 for the development of a novel multi-processor simulation approach.
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CHAPTER 5
Virtual prototyping of parallel video

coding systems

In this chapter, we introduce a high-level simulation methodology for complex VCAs. This
methodology represents a main contribution of this thesis and enables estimation of the VCA’s
parallel runtime behaviour on virtual hardware architectures. Section 5.1 describes the aspects
and design goals that such a simulation method has to focus on. Section 5.2 introduces our new
concept. The assumptions underlying this concept and its limitations are described. Section 5.3
describes the concept’s implementation.

5.1 General aspects and design goals

A methodology for estimating the runtime of a partitioned VCA on a virtual platform has to
address various aspects. According to Holzmann et al. [Hol91], the design process of a formal
model must address three aspects efficiently:descriptive clarity, modelling powerandanalytical
power. These criteria are considered as the prime indicators for the “quality” of a formal model.

Descriptive clarityin the context of virtual prototyping requires that clear and intuitive mod-
elling of the virtual system and the VCA’s execution is possible. The conceptual simplicity of
building a VCA model has a major impact on the modelling process. It influences the ease
and flexibility of the system designer to specify a virtual VCA. Especially for rapid design ex-
plorations, descriptive clarity is of prime importance. The effort involved in modelling a VCA
partitioning will typically influence the number of partitioning approaches the system designer
can consider in his analysis.

Themodelling powerof such a method must enable the system designer to describe avirtual
system without restricting the designer’s creative freedom. Describing the system’s underlying
processes in an accurate and technically feasible way is required. Consequently, the modelling
has to cover all aspects that influence the total execution behaviour and time of a virtual VCA.
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Figure 5.1: The Partition Assessment Simulation (PAS) can simulate virtual multi-core plat-
forms running VCAs. First, an abstract description of a VCA and the system’s hardware is
provided. Second, the system’s runtime behaviour is specified by providing information about
complexity, execution order and communication between tasks. Third, the PAS uses this infor-
mation to estimate the runtime behaviour of the VCA running on this virtual coding platform.
Approximations of the VCA’s performance (e.g., complexity, memory accesses, etc.) are derived
without the need to fully implement the hardware or the VCA’ssoftware.

This includes, for example, defining and describing the VCA’s tasks and task-interdependencies
and setting the VCA’s model in context of a virtual HW architecture (e.g. SW/HW mapping).

The investigation of dynamic runtime aspects in a parallel system cannot be done based
on static analysis. Hence, theanalytical powerof a suitable method is strongly related to the
method’s capability to simulate the system’s behaviour under runtime. It must be able to (i)
simulate such a system design and (ii) automatically deriveand transform the resulting simulator
information into a human-interpretable representation. In the following, we present a concept
that aims to address the conceptual objectives stated above.

5.2 Concept

In this chapter, we propose a high-level modelling approachthat enables system designers to
specify a VCA’ssystemin an abstract way. It supports the specification of virtual multi-core
coding platforms and can derive the runtime behaviour of a VCA running on this platform in an
automatic way. The design of our methodology provides meansfor addressing important aspects
of design space exploration in the context of parallel videocoding systems:

1. Means to describe the high-level functionality of a videoapplication (i.e. modelling of
computational tasks) must be provided. In our work, the domain-specific aspects of video
coding shall be addressed.

2. A simulation mechanism for mimicking the system’sparallel runtime behaviour based on
this formal description is necessary. Hardware-related aspects such as scheduling, data
exchange and notation of time must be supported.
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3. Means shall be provided that allow the designer to integrate knowledge about the runtime
behaviour of VCA tasks on similar hardware (e.g. gained via profiling) within this model.

4. Adaptation of traditional complexity estimation and profiling techniques for extracting a
VCA’s runtime information that is typically available during the system design.

5. The simulation results regarding the performance of a design must be transformed into a
human-readable representation.

The idea behind our methodology, which we refer to as thePartition Assessment Simulation
(PAS), is that a VCA running on a multi-core architecture executesthe same tasks as its single-
core implementation. However, in multi-core systems the parallel processing resources enable
the concurrent execution of these tasks. This results in a different execution order of the tasks.
The PAS simulates parallel processing, changing executionorder, and estimates the implications
on the VCA’s runtime. Figure 5.1 illustrates the three majorparts of the PAS: Specification,
characterisation and simulation.

System specification: The system designer defines virtual hardware resources such as pro-
cessing units (PUs) and memories, the computational tasks that are executed during a VCA’s
execution and the dependencies between these tasks.

Characterisation: Information about the VCA’s tasks complexity and the exchange of data
between tasks is provided. This expert knowledge can often be derived from profilings of the
VCA running on single-core platforms. For System-on-Chip (SoC) architectures which are
typically built from existing components, this enables us to put the SoC’s simulation in context
to hardware profilings from its already available single-core components.

Simulation: The PAS combines this information to set the tasks in the context of this new
virtual system. It determines the impact on the individual tasks’ runtime in a system with differ-
ent hardware resources and software partitioning.

Using abstract models for describing hardware and softwareresults in high flexibility when
doing design space explorations. This includes the evaluation of unknown hardware configura-
tions as well as software partitionings. For example, let usassume that we want to test a new
multi-core hardware system. In this case, the system designer only needs to reformulate the
description of the hardware and update the mapping of the tasks to the given processing cores.

In the following, Section 5.2.1 introduces a method based ondependency graphsfor describ-
ing the tasks and inter-task dependencies of a VCA efficiently. We extend this method in such a
way that the mapping of tasks onto specific HW units and hardware resources (e.g. processors
and memories) can be described. Sections 5.2.2 and 5.2.3 explain how hardware profiling infor-
mation is used to characterize this virtual system and how simulation of such a system can be
done, respectively.

5.2.1 System specification

Specifying a VCA’s system within the PAS can be divided into four stages (Figure 5.2). First,
a formal representation that describes a VCA’s execution behaviour in an abstract (i.e. HW
independent) way and down to a level of parallelisation (LoP) where parallel coding approaches
shall be implemented. This step involves the definition of the tasks that are executed during
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Figure 5.2: System specification in the PAS: (a) The designerdefines the coding tasks that are
executed during the coding of a video stream in an abstract way. (b) The dataflow and the
resulting dependencies between these tasks are specified. (c) The tasks are mapped onto an ab-
stract hardware platform. (d) The communication resources(i.e. FIFOs) for the communciation
between tasks on different processors are included in our system’s description.

the coding of a video stream and the dependencies between these tasks. This is visualised in
Figures 5.2(a) and 5.2(b), respectively.

For data-driven applications such as VCAs, tasks can typically be derived from the FBs
of the VCA. Each task reflects the execution of a FB for a particular VCL coding element.
For example, a task could be the intra prediction of a macroblock. If the system designer is
interested in investigating partitioning approaches for adecoder working at a slice level, the FBs
and consequently the tasks are defined at a LoP that represents the decoding steps for individual
slices. In our methodology the system designer models the FBs till a LoP that can describe
the parallel processing of a decoder’s partitioning approaches. This modelling at LoP has the
advantage that partitioning approaches can be described without providing knowledge about the
internal functionality of the underlying tasks themselves. This avoids the time-intensive task
of modelling a detailed algorithm functionality that takesplace inside the task. At the same
time it does not place any limitation on the parallelisationitself since the FB granularity can be
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increased arbitrarily.
After specifying tasks and dependencies, a virtual system definition (VSD) is defined (Fig-

ure 5.2(c)). The tasks are assigned (mapped) to virtual processing resources in this VSD. This
allocates the tasks to physical processing resources and determines where the processing of the
individual tasks takes place. In Figure 5.2(d), resources for simulating the communciation be-
tween the VCA’s tasks on different processors are specified within our VSD. This allows the
PAS to consider inter-processor communication during the system’s simulation.

High-level algorithm description

As mentioned in the previous section, the first step in our modelling approach is to specify all
tasks that occur at the LoP of a VCA. Specifying the tasks downto the LoP has a significant
impact on the modelling complexity and hence on the methodology’s suitability for fast proto-
typing. On the modelling side, no detailed information about the internal functionality of the
individual tasks has to be provided. This significantly reduces the amount of information that is
required when modelling a VCA’s system. On the simulation side, the PAS can consider each
task asatomic since no parallelisation inside a task takes place. This allows us to introduce
the following two simplifications that affect the way our methodology describes and simulates
parallel VCA systems:

First, we can assume that a task’s execution cannot be interrupted nor distributed to multiple
processors (i.e.atomic execution). Each task is considered as a sequence of instructions thatis
performed for a VCL coding element and once started by a processing unit (PU) is executed by
this PU without an interruption till the end. It should be noted, that in a physical system hard-
ware interrupts (e.g. for task scheduling or error handling) can occur during a task’s execution.
However, in a complex real-time VCA design, task schedulingcan only be exploited in a very
limited scope and the impact of task scheduling on the runtime performance can typically be
neglected.

Second, we make the simplification that a PU requires approximately the same number of
computational instructions and the same duration for executing a specific task, no matter whether
the PU is the only PU in the system or part of a multi-processorsystem.

Based on these assumptions, the execution of taskT can be specified by the task’s start time
timestart(T ) and end timetimeend(T ) with

timeend(T ) ≥ timestart(T ) (5.1)

The task’s durationduration(T ) is the time that passes (i.e. the difference) between start and
end times:

duration(T ) = timeend(T )− timestart(T ), duration(T ) ≥ 0 (5.2)

Let us assume that a VCA’s execution consists of the individual executions of the VCA’s
tasksT1..TN . The total duration of this VCA running on a single PU is the sum of these tasks’
durations:
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Figure 5.3: The figure visualises a dependency graph betweentwo macroblocks’ decoding tasks:
In this example, a simple video stream consisting of2 MBs is decoded. Each executed task is
represented as a vertex. The directed edges represent the dependencies between the tasks.

duration(V CA) =
∑

i=1..N

duration(Ti) (5.3)

The exchange of data between tasks (i.e. thedataflow) results in data-dependencies and
determines the tasks’ execution order and start/end times.For simulating a VCA’s execution,
these data-dependencies must be considered.

For describing a VCA’s dataflow in the PAS, we define a set of dependencies
D = {D1,D2, ...,DM}. Each dependencyDj ∈ D describes a data-dependency between
two tasks and is of the following form:

Dj : Ta → Tb (5.4)

In Equation 5.4, DependencyDj determines that taskTb depends on taskTa. This means that
the execution ofTb cannot be started untilTa has been finished:

Dj : Ta → Tb ⇒ timestart(Tb) ≥ timeend(Ta) (5.5)

For describing tasks and data-dependencies of a VCA,dependency graphsprovide a pow-
erful and flexible concept. Figure 5.3 shows an example of a dependency graph of a simple
decoder VCA. Each vertex in this dependency graph represents a task of our VCA. A directed
edge between two tasks represents a dependency. It indicates that the execution of the task this
edge is directed to cannot start before the other task has been finished.

Each taskTa in such a dependency graph represents a part of a VCA’s overall runtime and is
executed at a specific time intervall [timestart(Ta);timeend(Ta)]. A cycle in our graph would
mean that taskTa depends on itself and can only be executed after it has finished. This is not
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Figure 5.4: Sequential task order for a macroblock’s decoding tasks: Figures (a) and (b) visu-
alise two possible orders of executions of the4 decoding tasks of Macroblock1. The vertices
representing the start and end tasks in this order of execution are marked by a double and a black
circle, respectively.

possible for time-sequential programs. Hence, a VCA’s dependency graph cannot contain cycles
and can always be treated as aDirected Acylic Graph(DAG). Efficient algorithms for solving
DAGs are available. In Section 5.2.3 we will explain, how thePAS exploits this for simulating a
virtual system based on DAGs.

It is important to note, that while a VCA’s dependency graph defines exactly which tasks
must be executed before all data dependencies of a taskTi are solved, no uniqueOrder of Exe-
cution (OoE) is derivable from such a DAG. For example, in Figure 5.3, after taskT1 has been
executed two tasksT2 andT3 could be executed which shows the ambiguity in this description.

For describing a single-core VCA’s execution in a deterministic way, we introduce the term
sequential task orders(STOs). Each STO is a sequential list of tasks that determines an unique
and sequential order between these tasks and defines a deterministic execution path that is
taken during the VCA’s execution. For our example in Figure 5.3 with a single MB and four
tasksT1..T4, two STOs are possible:

STO1 : T1 → T2 → T3 → T4 (5.6)

STO2 : T1 → T3 → T2 → T4 (5.7)

Figures 5.4a and 5.4b visualise the two STOs in Equations 5.6and 5.7, respectively. The
solid arrows define the OoE which clearly states which task isexecuted after a dependency is
resolved. An STO can be seen as a DAG where each task only provides data for another single
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task (i.e. for each taskTi, only a single dependencyDj : Ti → Tb exists). The STO typically
depends on the VCA’s implementation for a specific platform and is defined consciously or not
by the system designer during the software development stage. This will become more obvious
in the next section when abstract hardware resources are added to our VCA model.

Abstract hardware resources

Next to a VCA’s dataflow and the execution order between tasks, we must be able to describe the
hardware components of our platform in an abstract way. In case of a parallel platfrom, multiple
processing units (PUs) are available. We define aprocessor setPV A = {P1, P2, ..., PM} that
contains all PUsP1..M of a virtual architecture(VA). For each of the VCA’s task, anassign-
mentAi : Ti → PUj is defined which assigns taskTi to PUPj .

Connecting the VCA’s tasks with hardware resources introduces physical limitations into
our VCA description. The assignmentAi : Ti → Pj determines that for computing taskTi,
computational resources of the assigned PUPj are used and that the execution of a taskTi can
only take place whilePj is not executing another task (i.e. no parallel task execution on a single
PU). In the following, we writeTi,j to refer to taskTi that is executed on processorPj .

Task execution order

While for single-core VCAs the choice of the STO does not alter the VCA’s overall runtime, in
a parallel environment with multiple STOs (i.e. one for eachprocessor), dependencies between
tasks of different STOs can have a significant impact on the overall runtime. For formally
describing the execution order of a VCA in multi-processor environments, we define Models
of Executions (MoEs). For a VCA running onM PUs, the MoE is a set of STOsS1, .., SM that
defines an STO for each PU. The MoE determines the execution within a VCA on a parallel
system in a unique way and independently of the underlying hardware.

Figures 5.5a and 5.5b visualise the mapping of the VCA graph from Figure 5.3 onto2 PUs
(i.e. 2 MoEs). In Figure 5.5a, the decoding tasks ofMB1 have been assigned to PUP1 and the
tasks ofMB2 to P2. This represents the case of a data-parallel decoding approach. Figure 5.5b
shows a functional decoder partitioning where theparserdecoding tasks have been assigned to
PUP1. The solid edges indicate the STOs for PUsP1 andP2. The dotted edges indicate data
dependencies between tasks of different PUs. Each STO defines a start and end task for each
PU. A PU stops the execution of his part of the VCA when all tasks that have been assigned to it
have been executed. The first task of each STO can either depend on no other task of the VCA
(i.e. the VCA’s initial task) or tasks from other STOs.

Data communication between tasks

No physical limitations on the communication between tasksand PUs have been considered so
far. For describing read and write transfers between tasks,we useFIFO communication buffers.
Each VCA contains a set of FIFOsF ∈ {F1..FK} whereK specifies the number of FIFOs of
this VCA. Each FIFO can be used to pass on data from one task to another. For parallel task
execution on multiple PUs, communication buffers are essential. A task running on PUPi can
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Figure 5.5: The figure visualises the mapping of a VCA’s graphonto a platform with multiple
PUs: (a) The decoding tasks ofMB1 andMB2 are assigned to PUsP1 andP2, respectively.
This represents a data-parallel macroblock decoding approach. (b) A functional partitioning of
the decoder assigns the parser tasks of both MBs to PUP1 and the remaining tasks toP2.

store its results for dependent tasks of other PUs that are not yet able to process this data.Pi

can continue executing its assigned tasks. Without communication buffers, it would have to stall
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until all dependent tasks have read the data (i.e. all data-dependencies are solved).
Within our VCA description we assign two FIFOs, an input and an output FIFO, to each task

Ti:

Ti → (Fin, Fout), F{in,out} ∈ F (5.8)

We refer to the input and output FIFOs of taskTi asFin(Ti) andFout(Ti), respectively. Task
Ti reads its input data fromFin(Ti) and writes its results toFout(Ti). A data-dependencyDj

between two tasks is solved by passing on data between these tasks using a shared FIFO:

Dj : Ta → Tb ⇒ Fout(Ta) ≡ Fin(Tb) (5.9)

While FIFO communication is obviously necessary for describing data communication be-
tween tasks of different PUs, also sequential VCA execution(i.e. running on a single-PU)
requires a model for describing the data exchange between tasks. In a single-PU scenario such a
model allows us to describe the storage of data that is too large to be kept in processor registers
until the next task is able to process it. For example, a task that processes a whole image will
store the image data in a local memory buffer where consecutive tasks can access it.

5.2.2 Characterisation

After the specification of the VCS’s components, thecharacterisationtakes place. In this step,
the VCA’s tasks are set in context of physical hardware. Currently, the PAS supports the follow-
ing task information that is considered during simulation:

• Processing time: Duration of a task for executing on its assigned processor.

• Transfer size: Amount of data that is exchanged between the dependent tasks.

• Transfer times: Times required for transferring input data to a task and forwriting the
task’s results to an output buffer.

For specifying how long a task is processed by a specific PU, information on each task’s com-
plexity must be provided to the PAS.

In Chapter 5.2.1, we have introduced the term duration. The system designer specifies the
processing durationdurationp(Ti, Pj) of a taskTi running on PUPj by using either clock
cycles or seconds, for example:

durationp(Ti, Pj) = 2500 cycles =
2500

clock(Pj)
seconds (5.10)

whereclock(Pj) refers to the clock rate of PUPj . Depending on the physical hardware the PU
is based on (e.g. processor type, hardware extensions, etc.), the duration of taskTi can vary. For
a VCS withN PUs, the PAS allows the system designer to specify the task’sduration for each
PU individually.

The PAS uses the FIFO communication buffers to specify the communication behaviour be-
tween tasks. Since in a real-world scenario FIFO buffers arelimited in the amount of information
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they can store, the system designer assigns abuffer sizesize(Fj) (e.g. in bytes or number of
MBs) to each FIFOFj . This size determines the maximal amount of data that can be stored
within this buffer.

A task can store its result data in its output FIFO if sufficient space within the buffer is
available. Similar to dependencies, we define a set of write conditionsC = C1..CK . Each write
conditionCk determines an output resource that is required by a taskTi for writing its results to
its assigned output FIFOFout(Ti):

Ck : size(Ti, Fout(Ti)) ≤ free(Fout(Ti)) (5.11)

In Equation 5.11,size(Ti, Fout(Ti)) refers, for example, to the number of bytes that taskTi

writes into its output FIFOFout(Ti) andfree(Fout(Ti)) to the amount of free memory in this
FIFO. TaskTi has to stall if one of his write conditions cannot be fulfilled(i.e. taskTi cannot
write its results into its output buffer due to insufficient memory).

Next to the memory requirements also the transfer time for storing/loading a block of data
to/from a FIFO has to be provided. In the PAS, we specify the read durationdurationr(Ti)
that it takes taskTi to read its input data from its input FIFOFin(Ti). In the same way we
specify a write durationdurationw(Ti) for writing the task’s output to its corresponding output
FIFOFout(Ti).

5.2.3 Simulation

Based on the specification and characterisation of the VCS, simulation of the runtime be-
haviour and estimation of the overall runtime can be done. This section explains how the depen-
dency graphs that build the foundation of our VCA description can be resolved efficiently.

In a realistic multi-core VCA, the tasks will strongly depend on each other. These depen-
dencies stem from the simple fact that one task usually needsthe results of one or more other
tasks as an input. The proposed PAS is capable of computing the overall runtime correctly with
respect to such dependencies. The basic algorithm to accomplish this simulation is introduced
in Figure 5.6. In the example of Figure 5.6, we only consider atwo-core system. However, the
algorithm can easily be extended to handle an arbitrary number of processors. We go into more
detail on the algorithm in the following.

The algorithm of Figure 5.6 maintains three different kindsof sets. First, a setTi represents
all tasks that have been executed on processorPi. Second, we use setsFt to keep track of all
those tasks that are already completed at a specific instanceof time t. Third, for each taskT a
dependency setDT is introduced, which is a list of all tasks that already need to be computed
before we can start execution of the taskT .

The main loop of the algorithm (Lines 16-43) is iterated until all tasks have been executed.
For each processor, we determine the taskT that shall be executed next (Line 24). This task
can only be executed if its dependencies are already resolved. We therefore iterate through the
dependency list ofT (Lines 28-33) to check whether all depending tasks are already member of
the finished task listFt at the current timet. If this is the case,T can be executed. We addT to
the list of finished tasks at timet + durationp(T ) and removeT from the list of tasks that are
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1: // lists of tasks that are executed on two processors
2: T1 = {T1,1, T2,1, · · · , Tn1,1};
3: T2 = {T1,2, T2,2, · · · , Tn2,2};
4: // list of tasks finished at times0, 1, · · · , tmax

5: F0 = F1 = · · · = Ftmax
= ∅;

6: // specify intra dependencies (just shown for processorP1)
7: DT1,1

= ∅;
8: DT2,1

= {T1,1};

9:
...

10: DTn1,1
= {T1,1, · · · , Tn1−1,1};

11: // add an inter-dependency (e.g, task 3 of processorP1

12: // needs to wait for taskT2 of processorP2)
13: DT3,1

= DT3,1
∪ T2,2;

14: // the current time
15: t = 1;
16: // loop while there are still tasks that need to be processed
17: while T1 6= ∅ ∧ T2 6= ∅ do
18: // tasks that are already finished at timet− 1 are also
19: // already finished at timet
20: Ft = Ft ∪ Ft−1;
21: // for both processors
22: for i = 1 to 2 do
23: // access the first entry in the task list of processorPi

24: T = Ti[1];
25: // check if all dependencies forT are resolved
26: dependencies_resolved = true;
27: // go through the dependency list ofT
28: for j = 1 to |DT | do
29: // check if the task on whichT depends has already finished at timet
30: if DT [j] /∈ Ft then
31: dependencies_resolved = false;
32: end if
33: end for
34: // in case that all dependencies are resolved
35: if dependencies_resolved == truethen
36: // addT to list of finished tasks at timet+ durationp(T )
37: Ft+durationp(T ) = Ft+durationp(T ) ∪ T ;
38: // removeT from the task list
39: Ti = Ti − T ;
40: end if
41: end for
42: t = t+ 1;
43: end while
44: // computed execution time of the multi-core system
45: return t;

Figure 5.6: Algorithm for simulating parallel task execution in a VCA. A detailed explanation
is given in the text.
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still waiting for execution (Lines 37-39). After the algorithm has left the main loop, the overall
computation is determined from the value of the variablet (Line 45).

It is important to note that the algorithm in Figure 5.6 only considers read-dependencies
between tasks so far. For addressing FIFO buffer limitations and their impact on the overall
processing time, we can extend this algorithm by adding an additional iteration after Lines 28-
33 for validating that the data resulting from a task can be written to the task’s output FIFO.

5.3 Implementation of the Partition Assessment Simulation

In this section, the implementation aspects of the PAS are described. Section 5.3.1 outlines
how time and complexity are treated within the PAS. In Section 5.3.2, we describe how the
PAS can exploit information from DDPs to automatically specify tasks and dependencies. Sec-
tion 5.3.4 focuses on the implementation aspects related tovirtual hardware prototyping and
VCA partitioning onto a multi-processor platform. The simulation of our VCS is explained in
Section 5.3.5.

5.3.1 Time domains within PAS

The general understanding of time and complexity in the context of a multi-core platform is of
great importance. In a real-world VCA running on a multi-processor platform, it affects essential
aspects such as the processing time required to execute a task or the synchronisation between
the PUs.

The PAS implementation differentiates betweenlocal timeandglobal time. The PAS con-
siders each PU in the VCS as an independent system with its ownlocal time system and its local
time counter. Whenever a PU executes a task, the PU’s local time counter is incremented by
the duration of this task and corresponding data transfer times. The local time countertlocal,i
indicates until which time the PUPi has been simulated by the PAS and what simulation data
(e.g. the start and end time of all tasks that have been executed till tlocal,i) is available.

The global timetglobal works as reference to coordinate the individual componentsof our
VCS during the simulation. Each value of a PU’s local time counter can be mapped to the global
time and vice versa:

tlocal,i ⇔ tglobal (5.12)

This also enables the translation between different local time systems. For example, the
local timetlocal,i of a PUPi can be translated into the global time and then further into alocal
time tlocal,j of another PUPj :

tlocal,i ⇒ tglobal ⇒ tlocal,j (5.13)

The ability to translate between local and global time enables us to analyse a VCS at a spe-
cific global timetglobal. This enables the PAS to address an essential aspect of a multi-processor
execution behaviour: the synchronisation between tasks ofdifferent PUs. For example, consid-
ering a scenario with two tasksTi andTj running on two different PUsPk andPm, respectively,
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if Ti depends onTj , then in order to evaluate whether this dependency is resolved, the time
when the results fromTj become available must be known in relation to the local time system
of PUPi.

Since FIFO buffers can be used by tasks of different PUs and, consequently, within multiple
local time systems, global time values are used to describe changes in the fill status of a FIFO.
The translation from global into local time systems enablesus to determine the fill status of a
FIFO at each PU and to consider this when simulating task execution on this PU.

5.3.2 Task generation based on data-driven profiling

In the previous chapter, a simple VCA with a small number of MBs and tasks was used to outline
the concept behind our modelling methodology. However, typical real-world VCAs have large
numbers of tasks and dependencies, and so a manual specification and characterisation becomes
intractable. In the PAS, means for automatically deriving the tasks of a VCA from a DDP are
provided. Three major steps are automatically done by the PAS:

1. Task specification: Generation of VCA tasks from the DDP based on profiling rules.

2. Complexity characterisation: Assignment of complexity information to individual tasks.

3. Coding characterisation: Assignment of application-specific coding attributes such as
MB, slice and frame number to individual tasks.

Exploiting the information available in a VCA’s DDP enablesus to map the VCA’s com-
plexity onto specific tasks. We can use this information to automatically retrieve the vertices of
our dependency graph from these profilings. For each task with a profiled runtime complexity
greater than0 cycles, a PAS task is created. The PAS stores all informationthat is required by the
PAS for the VCS simulation in a data structure. After the automatic task specification, this struc-
ture contains information about the task processing duration (durationp(Ti)) and VCA-specific
coding information such as the MB/slice/frame number the task is processing.

5.3.3 Rule-based specification of data-dependencies

Specifying the dependencies of a VCA in an efficient and semi-automatic way is supported by
the PAS. The designer can provide dependency rules (DRs) that describe the relation between
a VCA’s tasks and enable the PAS to automatically introduce task dependencies into a VCA’s
dependency graph.

In general, all DRs use the FB type and the coding informationof a task for specifying the
relation between the VCA’s tasks. For example in the H.264 decoder, the entropy decoding of a
MB always has to be done before the MB’s intra-prediction. Hence, if the functional type (e.g.
“entropy” or “intra”) of the tasks is known from the DDPs, a DRfor formalizing this task relation
can be created. An example of how such a DR would be specified isvisualised in Equation 5.14.
In the PAS, tasksTa andTb are considered as structures that contain coding information such as
the MB numberT∗.mb and functional blocksT∗.fb:
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DR(Ta, Tb) : (Ta.mb = Tb.mb) ∧
(Ta.fb =

′entropy′) ∧
(Tb.fb =

′intra′) =⇒ D : Ta → Tb

(5.14)

After specifying the VCA’s tasks using the DDP, the PAS uses the defined DRs for automat-
ically specifying all VCA dependencies. It is important to note that the number of dependencies
(and hence the number of required DRs) strongly depends on the granularity where the paral-
lelisation takes place. For example, in a slice-based H.264decoder partitioning, few dependen-
cies, mostly between slices of consecutive frames (i.e. inter-prediction), exist. For a MB-based
decoder partitioning, a larger number of DRs must be specified to describe the dependencies
between the tasks. Apart from parallelisation granularity, also the VCA’s underlying coding al-
gorithm’s complexity has a direct impact on the number of necessary DRs. Depending on the
number of coding tools supported by a coding algorithm, the amount of data dependencies can
strongly vary.

5.3.4 Partitioning of video coding application

For describing a virtual hardware platform, the PUs and the communication FIFOs must be
specified. An abitrary number of PUs can be created within thePAS. For each PU, a local time
counter is maintained by the PAS. During the simulation of a VCS, this counter specifies the
time this PU has been simulated so far. The FIFOs for data-exchange between tasks are created
by specifying the number of FIFOs and the size of each FIFO.

After the specification, the mapping of our VCA’s tasks onto the hardware platform is done.
The PAS supports this software-hardware mapping by three types of functions:

• Processor Assignment Functions (PAFs) for assignment of tasks to PUs

• FIFO Assignment Functions (FAFs) for assignment of tasks toFIFOs

• Memory Access Functions (MAFs) for describing the transferbehaviour between tasks
and FIFOs

These functions can be defined in the PAS using the Matlab high-level language syntax, which
results in a high flexibility when adapting the virtual hardware and software architecture to new
partitioning approaches.

Processor and FIFO assignment

PAFs enable the assignment of the VCA’s tasks to PUs after thetasks and dependencies have
been specified. Similar to wildcards, each PAF searches for tasks with specific coding attributes
(e.g. MB number, coding type) and assigns these tasks to a specific PU. This enables an efficient
and abitrary partitioning of the VCA onto the PUs. For example, data-parallel and functional
partitionings of the VCA can be defined by assigning MBs of a particular:

• slice/frame/frame row/frame column to a PU
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• function type (e.g. “entropy’,’intra’) to a PU

• coding type (e.g. intra coded) to a PU

The flexibility of this assignment enables fast partitioning of the VCA. For simulating dif-
ferent partitionings of the VCA, only the adaptation of the PAFs is necessary. The PAS can
automatically derive the new VCS and provide a runtime estimation for this new partitioning.

Each task within the VCA description has to be assigned to an input and output FIFO that
enables the PAS to model data transfer behaviour between tasks. Similar to PAFs, this assign-
ment is done using FAFs and uses coding information for assigning tasks with specific codings
to the same FIFO. It should be noted that PAFs and FAFs need coding information for assigning
the tasks to PUs and FIFOs. Consequently, these rules require an early characterisation of the
tasks before an automatic assignment can take place.

Memory Access Behaviour

The PAS supports the modelling of the MAFs for describing thedata transfer behaviour between
FIFO and tasks on a specific PU. The PAS provides linear modelsfor estimating the transfer
time of moving data between FIFOs and PUs as well as more complex models that can describe
abstract caching behaviour of task data. For example, a model for estimating the time required
for executing a DMA data transfer could have the following form:

durationw(Ti) =
Ti.sizeout

transfer_rate(Ti.f ifoout, Ti.pid)
+ latency(Ti.f ifoout) (5.15)

In this equation, taskTi writes its output data to its assigned output FIFOTi.f ifoout. The
duration this write transfer requires is estimated based onthe task’s output data’s sizeTi.sizeout,
the transfer rate between the executing PUTi.pid and its output FIFO. Furthermore, the model
assumes that a latencylatency(Ti.f ifoout) for initiating a data transfer to the output FIFO
occurs. For each task, the PAS automatically finds the corresponding MAFs by analysing the
task’s assigned PU and FIFOs and computes the read and write duration for transferring data
to/from the task.

Based on the available task information, more complex MAFs can be defined that also con-
sider caching strategies and data cache sizes based on the PAS simulations. This makes it pos-
sible, for example, to estimate how well data locality can exploited for a partitioned decoder
mapping.

5.3.5 Simulation process

The example in Figure 5.7 will be used to depict the simulation approach. In this figure, four
MBs are decoded on two processing units. The processing of each MB consists of a parsing and
entropy decoding task and a reconstruction task that performs all pixel reconstructions based on
the parsed MB bitstream information. In this example, all parsing tasks are executed on pro-
cessorP1, and all pixel reconstruction tasks on processorP2, which corresponds to a functional
decoder splitting.
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Figure 5.7: Functional partitioning of four macroblocks: For each macroblock two decoding
tasks, “parse & entropy decoding” and “reconstruct pixels”, are executed. The parsing and
reconstructing tasks are executed on processorsP1 andP2, respectively.

Figure 5.8 illustrates how the PAS simulation works for thisexample. The decoding process
of the first three MBs is shown in six simulation steps. ProcessorP1 executes the first decoding
taskT1,1 (i.e. parsing and entropy decoding) and writes the results to FIFOF1. In this example,
the buffer size ofF1 is limited to one macroblock. ProcessorP2 reads the results from FIFOF1

and applies the pixel reconstruction taskT1,2. Internally, the PAS maintains a list for each PU
and FIFO buffer. It stores the states and the filling levels ofeach PU and FIFO. The simulator
sequentially processes one macroblock decoding task afteranother.

The PAS uses the task assignment to determine the PU executing a decoding task. It evalu-
ates when this PU can start to execute a task. In Figure 5.8a, this is indicated by the white marker
(S). The processor’s execution counter is increased by the task’s duration. The black marker (E)
indicates the end of a task. At this point the processor has finished the task execution and written
its results to the output buffer FIFOF1. At this stage, the PAS does not know when the data is
removed by another task and marks the state of FIFOF1 as occupied.

In Figure 5.8b, processorP2 reads the MB data from FIFOF1 and frees the occupied mem-
ory in this FIFO. During the decoding of a MB, functional dependencies between the decod-
ing tasks and data dependencies between the individual MBs exist. We have presented MB
dependencies for the H.264 codec in Section 3.5.1. In Figure5.8b, a read stall due to data-
dependencies is illustrated. ProcessorP2 cannot start its decoding operations simultaneously
with processorP1, but has to wait until the required data becomes available inthe input buffer.
The PAS uses the algorithm description for detecting this read stall. The start of the task execu-
tion is delayed automatically.

In Figure 5.8c, the second MB is executed by processorP1 and written to FIFOF1. Af-
ter processorP2 has finished its decoding operations forMB1, it readsMB2 and executes it
(Figure 5.8d).

Until now only the impact of computational complexity on ourmulti-core decoding system
has been considered. Additionally, the PAS checks for buffer size constraints. For each task,
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Figure 5.8: Visualisation of the internal simulation process in the PAS. The figure shows the
execution states and buffer levels of two PUs and one FIFO, respectively. Three MBs are pro-
cessed on two individual PUs. For each MB, one task is executed onP1 and one onP2. After
partially decoding each MB, processorP1 writes the results to FIFOF1. For simplicity, the
FIFO’s maximum size is set to 1 macroblock. ProcessorP2 reads the MBs from this buffer and
computes the remaining decoding tasks. A detailed explanation is given in the text.
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limitations in the buffer communication (e.g., write stalls due to insufficient buffer sizes) can be
considered using the FAFs and MAFs. For example, the parsingtask requires a certain amount
of free memory for writing its results into an output buffer.The decision space can be explored
by specifying how much memory is required and how the data transfer influences the runtime
using MAFs (e.g., “What happens in the case of insufficient buffer?” or “How does the memory
access latency influence the decoder’s runtime?”).

Figure 5.8e visualises a case where insufficient buffer is available and a write stall occurs.
Since FIFOF1 has a maximum size of 1, processorP1 cannot write the results of decoding MB3
immediately. It has to wait until processorP2 has readMB2 and freed the occupied memory in
FIFOF1. A write stall occurs in this case. After finishingMB2, processorP2 readsMB3 from
FIFOF1 and decodes it. AfterMB3 could be written to FIFOF1, processorP1 continues with
the next MB.

For determining write stalls between tasks, the PAS internally computes the amount of data
which is exchanged between dependent tasks. It uses the user-defined communication FIFOs
and connects the tasks to these FIFOs. For each task, how muchdata is read/written to a FIFO is
specified. This information can be extracted from the decoder’s source code (e.g. “the deblock-
ing task reads X bytes”). For each FIFO, the PAS maintains a list of all read and write operations
that occur throughout the execution of VCA. This enables thePAS to automatically compute the
FIFO levels for each point in time throughout the VCA’s execution. The PAS delays a task if
insufficient memory for writing the task’s results is available.

Using the MAFs, the time a task requires for reading/writingto a FIFO can be specified. It
facilitates modelling of different memory properties suchas read and write duration, latency and
access time. The PAS delays the writing tasks automaticallybased on the MAFs.

5.4 Summary

In this chapter, we have introduced general aspects and design goals for VCA partitioning. The
flexibility and descriptive clarity for modelling VCAs to different hardware partitionings and
to exploit available knowledge (e.g. from hardware profilings, algorithm knowledge, etc.) are
considered as the prime requirements of such a partitioningapproach. We have introduced the
PAS concept for describing a VCA in an abstract way and for mapping the VCA onto a virtual
hardware platform. During a specification step, information on the VCA structure, the virtual
hardware platform and the partitioning is defined. The characterisation step introduces informa-
tion about runtime complexity, transfer behaviour and physical constraints. The last stage, the
simulation, combines all this information to estimate the runtime as well as the memory transfer
behaviour of our application.

An implementation of the PAS has been provided. It enables detailed analysis of imple-
mentation aspects of our proposed concept such as concurrent simulation. We have provided
functionality for fast generation of VCA descriptions fromDDPs. Furthermore, mechanisms
for assigning tasks to PUs and FIFOs have been introduced that enable the system developer to
describe complex platforms and VCAs with low effort.
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CHAPTER 6
Concept verification and design space

exploration results

In this chapter, we use the PAS methodoloy for modelling various real-world partitioning sce-
narios of H.264 decoders. We verify the PAS methodology and demonstrate its usage in the
following way. First, we use the PAS for modelling a single-core decoder running on one core
of an existing dual-core reference architecture (Section 6.1). Second, we derive function traces
of a single-core decoder running on this architecture in Section 6.2. By calibrating the PAS
model according to these hardware profiles, we can model the hardware characteristics of our
architecture within the PAS. In Section 6.3, we verify the usage of the PAS using a dual-core
H.264 decoder running on this reference architecture. By comparing the runtime behaviour of
the reference dual-core decoder system with the PAS simulation of the same VCS, the accuracy
of the PAS is estimated. Third, we demonstrate how the PAS canbe applied for fast design space
explorations in Section 6.4.

6.1 Specification of a dual-core video coding system

For this evaluation, the same reference architecture as described in Chapter 4.3.1 has been used
(Figure 4.4). The decoding in this VCS works as follows: The ARM processor receives the
compressed video data as an MPEG-2 transport stream. It extracts the compressed H.264 video
data and writes it to the external mDDR memory via DMA transfer. One CHILI processor uses
DMA transfers for fetching the H.264 video data into the core’s faster 64 kB local data memory
and starts decoding it. This PU executes all parsing and entropy decoding tasks. The results
of this process are stored into a shared memory (SRAM). The second CHILI processor reads
the data from the SRAM and executes the reconstruction tasksbefore it writes the results into
the external DDR memory. This reconstruction includes all pixel-manipulation tasks such as
prediction and deblocking. The decoded pixel information is transferred via DMA to the DCCs
framebuffer memories. These framebuffer memories are located on the external mDDR memory.
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System specification and characterisation of tasks

In the first step, we profile a single-core decoder and generate DDPs obtained as explained in
Chapter 4.3. Based on the DDPs we can specify the tasks of our VCS in an automatic way.
During the DDP-based task specification, complexity information of each task for the individual
PUs is obtained as well. After the assignment of a task to a PU is known (i.e. the task has
been assigned to a PU of our architecture), the complexity information from the specific DDP
obtained on this PU serves as the processing duration of the task during the PAS simulation.

The second step consists of defining the available PUs and FIFOs of our system. One ARM
processor for transport stream multiplexing and two CHILI processors for executing the com-
putationally intensive video processing tasks are defined.Furthermore, communication FIFOs
(mDDR, SRAM and local processor memories) for data exchangebetween the tasks are speci-
fied according to the reference architecture.

Before starting the exploration of new designs, we have to calibrate the PAS to match the
characteristics of our reference hardware. This procedureis explained in the next section.

6.2 Characterisation of virtual hardware

After specifying the structure of our VCS, we calibrate the VCS according to the target hardware.
This step includes characterisation of the PUs and memory transfer behaviour. Characterisation
of the PUs is done by specifying the clock rate of the processors within our VCS. In this case, a
clock rate of 300 MHz of our reference system has been used.

For characterizing the memory access behaviour of our VCS, we have to calibrate the mem-
ory transfer times of the PAS to fit the transfer times of our reference architecture. For obtaining
these transfer times from the DDP of the single-core H.264 decoder, we assign all tasks of the
VCA to a single CHILI processor and adjusted the memory modeluntil both, the PAS simu-
lated single-core decoder and the single-core decoder profiled on a CHILI processor have ap-
proximately the same execution runtime. Remember the equation provided in Section 5.3.4 for
describing the memory write access behaviour as a linear function of the amount of transferred
data, the transfer rate and the latency introduced by initiating a memory transfer:

durationw(Ti) =
Ti.sizeout

transfer_rate(Ti.f ifoout, Ti.pid)
+ latency(Ti.f ifoout) (6.1)

For specifying a memory model for our concept verification, we have assumed that4 bytes (32
bits) per clock cycle can be transferred over the 32-bit databus of our system (i.e. a transfer rate
of 4 bytes per clock cycle) and that a fixed latency for initiatingthe memory transfer is required.
We have specified the duration of memory read and write transfers using the following equations:

durationr(Ti) =
Ti.sizein

4
+ latency(Ti.f ifoin) (6.2)

durationw(Ti) =
Ti.sizeout

4
+ latency(Ti.f ifoout) (6.3)
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Figure 6.1: Calibration of the PAS memory models: The PAS settings are calibrated according
to the single-core profilings. The absolute runtime and the relative runtime difference between
the HW single-core implementation and the PAS results aftercalibration are provided.

For specifying a realistic latency, four different memory models (MM1-4) with different laten-
cies have been compared against the hardware profiling results. Latencieslatency(Ti.f ifoin/out)
of 4, 7, 9 and 16 cycles for memory models MM1, MM2, MM3 and MM4 have been set, re-
spectively. It should be noted that the memory model can be extended if more information on
the hardware is available.

Figure 6.1 shows the comparison between the simulated and the measured runtime after the
calibration. The absolute runtime obtained for each model is visualised for16 test sequences.
Furthermore, the runtime difference between the PAS simulated single-core decoder runtime and
the measured runtime are provided. Of all four MMs, MM1 describes the memory access be-
haviour with the lowest transfer time for moving data between the PUs and the FIFOs and MM4
the memory model with the slowest memory transfer. We can observe that MM3 shows the best
aproximation with a maximal runtime difference of less thanone percent between measured and
estimated runtime. On average, MM3 has runtime differencesof less than one percent. The
highest differences can be observed for the “Station2” sequence with close to two percent.

The information from DDPs and PAS simulation enable us to compare the measured and
the simulated runtime behaviour in more detail. Figures 6.2and 6.3 show the relative and the
absolute difference between measured and simulated runtime over time. This enables us to
estimate the cumulative error that is introduced by our model. In this detailed analysis we can
see thatMM3 performs well and shows the smallest cumulative error of thefour MMs. In
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Figure 6.2: Calibration of the PAS memory model: Relative runtime difference in percent be-
tween estimated and measured runtime over time for4 different memory models.

Figure 6.2, it can be observed that for all MMs and test streams the cumulative error stays nearly
constant after an initialisation phase of approximately5 × 108 cycles runtime. This indicates
that using linear MMs within our PAS is sufficient for describing the runtime behaviour of our
reference single-core decoder. In the following, we useMM3 for characterising the memory
access behaviour in our VCS.
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Figure 6.3: Calibration of the PAS memory model: Absolute runtime difference in clock cycles
between estimated and measured runtime over time for4 different memory models.

6.3 Verification using a functional dual-core decoder splitting

After calibrating the PAS, we have evaluated the differencebetween a measured and a PAS-
predicted dual-core decoder runtime behaviour. The decoding process of16 test sequences was
simulated using the PAS. This enabled us to determine the accuracy of the PAS simulator for
the simulated VCS for these test sequences. Figure 6.4 provides a comparison between the HW-
profiled and the PAS-simulated results. In this figure, the overall runtime is visualised for (i)
the measured single-core decoder runtime, (ii) the runtimemeasured for the dual-core decoder
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Figure 6.4: Verification of the PAS simulator: The figure provides the absolute runtime of the
single-core HW implementation, the dual-core HW implementation, the PAS estimation and
a simple estimation technique. This simple estimation technique divides the runtime by the
number of cores (e.g. for two cores by a factor of2). Furthermore, the relative runtime difference
between the dual-core HW implementation and PAS estimated runtime as well as the simple
estimation technique is provided. In both figures, the PAS estimation clearly outperforms the
simple estimation technique.

implementation, (iii) the estimated runtime derived from the PAS simulation and (iv) a runtime
estimation based on a simple estimation technique. This estimation technique assumes that the
workload can be divided equally amongst all available PUs and divides the runtime measured
for the single-core implementation by the number of available PUs.

An average relative error of around11.5 percent and a maximal relative error of around18.5
percent can be observed for the PAS over the16 test sequences. This clearly outperforms the
simple estimation technique that assumes that both PUs can “divide” the tasks equally amongst
them and reduce the runtime by 50%. This assumption is not capable of addressing differences
in the balancing between the individual PUs. This can be observed in Figure 6.4 in the large
relative runtime difference of on average25 percent for all test sequences.

It can be noted that for sequences with higher bitrates such as “Parkrun”, “Parkjoy” and
“Stockholm”, the PAS provides better estimations between2 and13.5 percent than for sequences
with lower bitrates where higher relative differences of upto 18.5 percent can be observed.
This indicates that the PAS model describes the dynamic behaviour of our decoding system less
accurately for low bitrate scenarios.

Figures 6.5 and 6.6 provide the relative and absolute difference between measured and es-
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Figure 6.5: Verification of the PAS simulator: The figure shows the relative runtime difference
between the runtime HW(DC) measured on a dual-core system, the runtime estimations by the
PAS and a simple runtime estimation HW(SC/2) that divides the runtime measured on a single-
core system by the number of available cores.

timated runtime, respectively. For each MB, we have measured the time when the decoding of
this MB has been finished and compared it with the time estimated by the PAS. We can see in
Figure 6.5 that the simple estimation technique, in general, is too optimistic and underestimates
the runtime by typically more than20%. The PAS tends to slightly underestimate the runtime for
high-bitrate sequences but provides good estimations for moderate and high-bitrate sequences
with a relative error of not larger than13.5%. For sequences with very low bitrates such as
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Figure 6.6: Verification of the PAS simulator: The figure shows the absolute runtime difference
between the runtime HW(DC) measured on a dual-core system and the runtime estimated by the
PAS.

“Sunflower” and “Pedestrian”, the PAS tends to overestimatethe runtime by up to18.5%, which
means that it still outperforms the simple estimation technique for these streams. It can be con-
cluded that on all test sequences the PAS outperforms the simple estimation technique in terms
of accuracy.

Looking at the absolute runtime differences between PAS andhardware-measured runtimes
in Figure 6.6, we can observe a strong “stair” effect for high-bitrate sequences such as the
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“Crowdrun”, the “Dukstakeoff”, “Stockholm”, “Parkjoy” and “Parkrun” sequences. Between
the consecutive frames, strong increases of the cumulativeabsolute runtime error occur. The
pattern indicates that during specific phases of the decoding process the estimation works less
effectively which results in a stronger drift during these phases. In this case, it seems that the run-
time prediction works less well for B-frames, which coincide with the locations of the increased
drifts. This effect between two consecutive frames cannot be observed for the other sequences
with lower bitrates, which indicates that the model cannot yet estimate all coding options that
are typically used during B-frames when coding high-bitrate video sequences. Furthermore, for
sequences with moderate bitrates such as “Tractor” and “Oldtowncross”, stronger changes of the
absolute runtime error can be observed at frames where a GOP ends and the decoding process
that takes place at the end of GOPs could be further refined. This provides room for further
increasing the PAS accuracy. However, for this work an average relative error of7 percent is
precise enough to start design space explorations. This is explained in the following section.

6.4 Design space exploration

In this section, exploration of design space is demonstrated by introducing a functional partition-
ing of our single-core reference H.264 decoder and evaluating the bottlenecks in the resulting
system (Section 6.4.1). In Section 6.4.2, this VCS is partitioned further using the multi-column
partitioning scheme introduced in Section 3.5.3. For descriptive clarity, we use only four test
sequences (“Bus”, “Shields”, “Stockholm” and “Parkrun”) for demonstrating the steps of the
design space exploration.

6.4.1 Functional partitioning

Typically, we start exploring a system from a single-core decoding system. This system runs on
a single CHILI processor and with a performance of5 − 10 frames per second (fps) according
to our profilings and the calibrated PAS single-core simulation. We start the exploration of our
decoder development by moving the computationally-complex parsing and entropy decoding
tasks onto a second CHILI PU. The remaining tasks are executed on the first PU. The two PUs
are connected by a buffer that can hold one line of MBs (i.e.80 MBs for a horizontal resolution
of 1280 pixels and16 pixels width per MB). We use the PAS for estimating the performance of
the two-core system. Figure 6.7a shows the frame rates resulting from the individual decoder
partitionings. For evaluating the results, the optimal frame rate increase is also visualised. In
this context, optimal means that the performance of a systemscales linearly with the number of
cores (i.e. two processors would result in doubling the frame rate).

The functional partitioning into parser and reconstructor(P+R) significantly reduces the run-
time complexity of all 4 sequences. It can be noted that sequences with higher bitrates such as
the “Stockholm” and the “Parkrun” sequences benefit more from this functional splitting. Fig-
ure 6.7b and 6.7c show the usage for the parsing and the reconstruction cores and the complexity
for the parsing and the complete decoding process in cycles per second, respectively. The high
usage of100% of the reconstructor processor compared to the parser for all 4 test sequences
shows that the reconstructor represents the bottleneck in our system. Low-bitrate sequences
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Figure 6.7: Runtime of the simulated decoder partitioning approaches. (a) The frames per sec-
ond achieved for various approaches are provided: the single-core decoder (SC), the functional
split decoder into one parser and one reconstructor core (P+R), one parser and data-parallel par-
titionings of the reconstructor onto up to four cores (P+2R,P+3R, P+4R) and an extended CHILI
processor with improved parsing combined with a data-parallel partitioning of the reconstructor
onto four cores (Px+4R). (b) The usage of the cores running the parsing and the reconstruc-
tion tasks. The average usage for all available reconstruction cores is shown. (c) The absolute
runtime complexity for real-time decoding of the4 sequences in clock cycles per second.

such as “Bus” and “Shields” only have a moderate parser usageof approximately40 percent
while a stronger parser usage of more than60 percent can be observed for the high-bitrate se-
quence “Parkrun”.

The slow reconstructor and the limited buffering between the two cores result in write stalls
at the parser side. We have various options for using the parser’s computational resources more
efficiently. Firstly, we can improve the reconstructor performance by moving it onto multiple
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processing units. Secondly, we can move additional tasks from the reconstructor (e.g., the filter
strength calculation from the deblocking) to the parsing core. Thirdly, we could increase the
buffer sizes between parser and reconstructor. All three options can easily be evaluated with the
PAS. In the next section, we follow the first option, which is the most interesting approach in the
context of multi-core architecture design.

6.4.2 Data-parallel partitioning

Functional partitioning of the decoder reveals that the reconstructor is the bottleneck in our cur-
rent system. By using a data-parallel decoding approach this part of the decoding process can
be computed on multiple processing units. In this work, we use the multi-column approach in-
troduced in Section 3.5.3. Each frame is partitioned into vertical regions. Each of the regions
is assigned to an individual processing unit. The reconstruction tasks for the MBs in this region
are performed on this processing unit. This approach requires consideration of the H.264 mac-
roblock dependencies. Each processing unit can start with the decoding when all dependencies
to neighbouring regions have been resolved.

Figure 6.7a shows the increase in frame rate that is achievedwith each additional recon-
structor core. Adding a second reconstructor (P+2R) strongly increases the frame rates for all
sequences according to our simulation results. For the “Bus”, “Shields” and “Stockholm” se-
quences, the frame rate nearly doubles compared to the scenario with one parser and one recon-
structor. Figure 6.7b shows the core usage for the parsing core and the reconstruction cores. For
scenarios with more than one reconstructor, the average usage of all reconstruction cores is pro-
vided. We can observe that for the “Stockholm” and the “Parkrun” sequences, the parsing core
becomes the bottleneck in our decoder. For the “Parkrun” sequences, only around75 percent
of the reconstructors’ execution time is effectively used for decoding. The parsing core runs at
nearly100 percent processor usage.

For three reconstructor cores (P+3R), the performance significantly improves for the “Bus”
sequence. The performance for the other sequences does not improve significantly due to the
high bitrates and more extensive parsing complexity of these sequences and the resulting stalling
times caused by the slow parsing. The average reconstructorusage is between50 and80 percent.
For4 reconstruction cores (P+4R), this decreases further and only between40 and60 percent of
the reconstructors’ execution time is used for decoding tasks.

Figure 6.7c shows the complexity for the parsing and the complete decoding process in cy-
cles per second. The parsing complexity in the final configuration requires approximately1.25
GCycles per second and determines the runtime of our decoding system. Overall, the PAS sim-
ulations indicate that more than2 cores for the reconstruction do not improve the performance
of the system significantly. Only for low-bitrate sequences, a performance increase can be ob-
served. The system designer can choose a system design that considers this already (i.e. cost
optimisation) or concentrate on the parsing part of the system that is the obvious bottleneck of
the current system. For example, the functionality of the parser can be split onto more cores for
improved concurrent processing.
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6.4.3 Alternative processor for parsing

For evaluating how a faster parser influences such a system, an extended CHILI core for hard-
ware accelerated parsing was evaluated in the P+4R setup (Px+4R). This extended CHILI pro-
cessor provides hardware-acceleration for the bistream parsing and the entropy decoding. It
should be noted that for simulating heterogeneous architectures with different types of pro-
cessing units, the PAS uses multiple DDPs as input, and the PAS capability to merge DDPs is
exploited. In this case, two DDPs were used for deriving complexity profilings. One DDP was
generated from a single-core H.264 decoder running on a normal CHILI and one DDP from
the same decoder on an extended CHILI PU. Depending on which processor constellation was
simulated, one or the other DDP was used for the PAS simulation.

Overall, we can observe a strong reduction in the parsing time in Figure 6.7c and a significant
impact on the frame rates (Figure 6.7a). However, the hardware-accelerated parser increases the
frame rate more for sequences with high bitrates such as the “Parkrun” sequence. Figure 6.7b
shows that a similar core usage between parser and reconstructor cores and hence a good balance
is achieved in this system setup.

6.5 Summary

In this section, we have demonstrated how virtual architectures can be simulated within the
PAS. We have proposed a virtual model of a VCS using the PAS’s abstract high-level descrip-
tion language. This model has been calibrated using profilings from existing single core decoder
implementations. The calibrated model has been verified using an existing hardware implemen-
tation and its accuracy has been determined. On average, a relative prediction error of11.5
percent could be observed for16 test sequences.

We have used PAS for exploring new functional and data-parallel decoder partitionings and
for predicting the runtime behaviour of these parallel designs. First, we distributed a single-core
decoder’s parsing and reconstruction functionalities onto two PUs (i.e. functional partitioning).
A PAS simulation of this design idendified the execution of the reconstruction tasks as the bot-
tleneck. By introducing additional PUs for data-parallel processing of the reconstruction tasks,
this bottleneck was resolved. We demonstrated that adding up to 3 PUs for the computational
intensive reconstruction tasks results in a significant performance increase for this design and a
frame rate of up to17 fps can be achieved. Finally, we replaced the parsing PU in this design
with a hardware-accelerated PU that is more suitable for entropy decoding tasks and demon-
strated that this new design can achieve real-time performance (i.e. 25 fps) for all test sequences
and a high average usage of around85% for all PUs.
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CHAPTER 7
Conclusions and future work

7.1 Conclusions

When making design decisions on a parallel video coding system’s architecture (i.e. hardware
platform and VCA software partitioning), accurate runtimepredictions for VCAs provide an
essential means to base these decisions on. This thesis has concentrated on runtime predic-
tion techniques for estimating the performance of parallelVCAs at early stages of the system
design. The DDP and PAS methodologies introduced in this thesis combine existing profiling
techniques and simulation-based runtime prediction to provide means for efficiently modelling
parallel VCSs and for estimating their runtime. The solutions provided in this thesis have tack-
led two important aspects, namely: (i) analysis of the dynamic behaviour of single-core VCAs
in the context of parallel system design and (ii) the runtimeprediction of virtual multi-core
architectures running parallel VCA implementations.

7.1.1 Analysis of VCA runtime behaviour

We have described the strong structural similarities and conceptually similar coding tools that
are shared amongst modern hybrid video coding standards such as H.264 and VC-1. Based on
the similar hierarchical coding elements and VCL definitions for representing video content,
we have proposed the Data-Driven Profiling (DDP) analysis technique for deriving information
from single-core VCA implementations. We have shown that the fundamental similarity be-
tween hybrid video coding algorithms can be exploited for mapping of VCA runtime profilings
onto the hierarchical data structures and functional blocks of a video coding algorithm. This en-
ables detailed analysis of dynamic runtime aspects of a VCA in context of the processed video
data. For example, critical aspects such as variations in the processing time of each coding
element and individual functional blocks of the VCA can be investigated.

Knowing the complexity of individual parts of a VCA and beingable to analyse complexity
in relation to the processed data structures within a VCA provides important insights into dy-
namic runtime aspects of a VCA on a functional as well as a datalevel. We have demonstrated
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three ways of exploiting DDPs for analysing complexity and deriving essential information for
parallel system design. First, we have demonstrated how complexity information about the pro-
cessed VCL coding elements can already highlight potentialproblems in work balancing for
frame- and slice-based data-parallel approaches in an early design stage. For example, we have
extracted information on the dynamic runtime complexity ofdifferent MB codings (i.e. I/P/B-
predicted). Second, we have shown how complexity variations in the FBs of a VCA’s video
coding elements can be analysed. This provides a starting point for implementing well-balanced
functional partitioning techniques. For demonstrating the above contributions, we have exploited
runtime profilings of an H.264 decoder for analysing the dynamic runtime variations in the de-
coder’s functional blocks. We have shown that the runtime aswell as the runtime variations
for the individual H.264 decoder FBs increase with the bitrate. Decoding blocks with a large
amount of conditional code such as the entropy decoding and the deblocking are more sensitive
to bitrate changes than pixel-based FBs. Third, we have extracted coding information which de-
termines the progam flow of a VCA and exploited this information to determine the processing
time of individual image regions. We have shown how this information supports data-parallel
partitioning where the decoding tasks for image and video regions are distributed amongst mul-
tiple processors and knowledge about the dynamic behaviourof the VCA provides an intuitive
means for choosing the best partitioning.

7.1.2 Modelling and simulation of virtual architectures

We have introduced the PAS simulation technique and demonstrated that this technique can
estimate the performance of abitrary system configurationswhere a VCA is distributed onto
multiple processors in an accurate way. It enables the modelling and simulation of virtual video
coding architectures without the need for implementing theparallel hardware or VCA software.
PAS combines DDP and simulation-based runtime estimation to predict the runtime of a virtual
architecture.

We have demonstrated that PAS enables the exploration of complex parallel VCS designs in
an early stage of the design process and to quickly adapt existing solutions to new applications
and system requirements. Based on this PAS concept, a simulator has been implemented. By
analysing the PAS results for a range of complex test sequences, it could be shown that the PAS’s
runtime prediction on average deviates only by around 11.5%from the real implementation’s
runtime.

PAS addresses two core requirements of system design exploration, namely high flexibility
and low time effort due to modelling and simulation. We have demonstrated the flexibility of
our technique to describe complex designs and to explore newdesigns in a time-efficient way.
We have provided examples of functional-partitioned as well as data-parallel H.264 decoding
approaches and have shown that no low-level algorithm partitioning is required for the design
exploration. The ability to quickly adapt a model to a specific VCA partitioning or a HW archi-
tecture has been demonstrated. It has be shown that the PAS can highlight the bottlenecks of a
parallel H.264 decoder design before partitioning it onto amulti-core platform. Starting from a
single-core H.264 decoder with5 FPS, we have exploited the PAS methodology for designing a
strongly parallel real-time H.264 decoder design that can deliver between25 and30 FPS.
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We believe that the results of this thesis open up new possibilities to explore parallel system
designs in an early design phase and provide novel tools to system designers to optimise the
complex development processes of parallel video coding solutions. The contributed techniques
can address the design challenges of parallel VCS efficiently and reduce the development time
and the risk of design errors significantly.

7.2 Open topics for future research

In this thesis we have demonstrated that the PAS provides accurate means for design space
exploration and runtime prediction of virtual and parallelVCS. However, there are various areas
and open topics that can be addressed in future research:

• In this thesis we have exploited the structural similarities of video coding algorithms for
design space explorations of VCAs. The proposed techniquescould be generalised further
to be applicable for additional block- or pixel-based imageprocessing algorithms. In this
context, algorithm simulation at pixel-level could be investigated.

• Another focus of future research could be on the analysis of existing architectures with
high core counts. By using our high-level simulator, we could estimate the complex be-
haviour of such architectures. We could derive accurate models for the PAS that describe
the strong interaction between the individual components in such a system in an efficient
way. For example, the impacts of memory bandwidth limitations and hierarchical mem-
ory structures on the system’s performance could be analysed in detail. This could further
refine the PAS methodology and result in a more accurate runtime prediction.

• Furthermore, we could extend the PAS to address the emergingarea of Reconfigurable
Video Coding (RVC). The techniques and methods provided by RVC could allow the PAS
to derive the algorithm structure in an automatic way. On onehand, this can reduce the
effort of modelling a VCA in the PAS significantly. On the other hand, this opens up a
powerful simulation framework to RVC design applications.
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APPENDIX A
Detailed description of test sequences

This chapter provides a detailed description of the individual test sequences used throughout
this thesis. The variety of these sequences in terms of content enables us to test the techniques
introduced in this thesis over a wide range of content types and show the potential of our methods
to analyse and estimate the decoding behaviour for these sequences.
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Sequence 1: Bluesky
In this sequence, a rotating camera records two trees
from below. A weakly textured, blue sky is visible be-
tween the trees. The borders between the sky and the
tree provide most of the video’s texture while the trees’
leaves appear dark and slightly blurred.

Sequence 2: Bus
The sequence contains slow global camera motion. The
vehicles move on the street from the right to the left with
moderate speed. Partial and full occlusions between the
vehicles occur. The sky at the top-left is low textured in
contrast to the moderately textured buildings and vehi-
cles.

Sequence 3: Crowdrun
A crowd runs towards the camera and leaves the scene
at the bottom and bottom-left sides of the picture. While
the upper half of the frame contains little motion, many
local movements caused by the individual runners ap-
pear in the bottom half of the frame. The sequence’s
texture concentrates around the centre (e.g. trees) and
the bottom half of the frame (e.g. runners).

Sequence 4: Duckstakeoff
In this sequence, multiple swimming ducks cause com-
plex movements of the water surface. As they take off
into the air, additional disturbances at the water surface
occur. The fast moving wings of the birds are blurred.

Table A.1: Test sequences 1 to 4.
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Sequence 5: Intotree
The sequence shows a house next to a natural area with
trees. The camera moves above the scenery and takes
a slow turn to the right towards the trees. The trees are
highly textured and cause most of the scene’s texture.
The house and the sky are only weakly textured.

Sequence 6: Oldtowncross
A town is recorded from above. While the camera di-
rection stays constant, a moderate camera transition to
the left occurs. Most of the texture is caused by the
buildings. The low textured sky stays static during the
sequence.

Sequence 7: Parkjoy
A natural and highly textured scenery with a high num-
ber of occlusions is recorded. The camera moves to
the right and keeps track of the moving people at the
other side of the river. A tree in the foreground of the
scene moves across the picture and occludes parts of the
scenery.

Sequence 8: Parkrun
A slowly moving camera moves horizontally to the right
and follows a runner at the other side of the river. The
scenery is strongly textured due to fine structured trees
and the meadow. The top quarter of each frame is only
moderately textured.

Table A.2: Test sequences 5 to 8.
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Sequence 9: Pedestrian
The sequence shows a pedestrian area recorded with a
static camera. Pedestrians and cyclists cross the scenery
and a high number of occlusions occur between them.
The camera is focusing on the buildings in the back-
ground. The moving objects in the front are out of focus
and blurred.

Sequence 10: Riverbed
A riverbed and a complex moving water surface with
strong reflections is shown. On the surface fine motions
due to the wind and the river motion can be seen. The
water surface reflects a grey and untextured sky.

Sequence 11: Rushhour
A static camera in the center of the street records two
lanes of passing cars. In one lane, the cars move towards
the camera. In the other lane, they move away from the
camera. The camera focuses on the closer cars and the
background is blurred. The hot and moving air causes
optical disturbances.

Sequence 12: Shields
A slowly moving camera tracks a man in an indoor
scenery. The man moves to the left and shows fine tex-
tured shields hanging on the wall. The motion clearly
separates the moving man from the shields in the back-
ground.

Table A.3: Test sequences 9 to 12.
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Sequence 13: Station2
This sequence shows multiple railway tracks and a mov-
ing train. The camera zooms out and the scene appears
blurred and out of focus.

Sequence 14: Stockholm
The city of Stockholm is recorded from above. The
camera slowly moves from the left to the right reveal-
ing new buildings and streets. In contrast to the highly
textured buildings and streets, the sky is only weakly
textured.

Sequence 15: Sunflower
A randomly moving camera records a bee sitting on a
sunflower. While the sunflower appears clear and in fo-
cus, the fast moving bee is blurred.

Sequence 16: Tractor
The sequence shows a tractor moving through a field.
The camera is focused on the tractor and follows its
movements. The field behind the tractor appears out
of focus and blurred.

Table A.4: Test sequences 13 to 16.
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