
Accelerating Structured Web Crawling without Losing Data

Boutros R. El-Gamil
Vienna University of Technology, Institute for

Software Technology and Interactive Systems
Favoritenstraße 9-11
1040 Vienna, Austria

boutros@ims.tuwien.ac.at

Werner Winiwarter
University of Vienna, Research Group Data

Analytics and Computing
Währinger Straße 29
1090 Vienna, Austria

werner.winiwarter@univie.ac.at

ABSTRACT
Size of retrieved data versus crawling time formulate a well-
known dilemma in the structured Web crawling community.
The real challenge within this dilemma is to optimize the
settings of a given wrapper to obtain maximum available
data in shortest possible time. In this paper, we try to
tune these settings, by introducing a threaded algorithm
that guarantees accessing all available detail pages within
crawling scope; and using this algorithm, we try to reduce
the time consumed by the crawler, via simple adjustments
of sleeping time after each detail page visit.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human information pro-
cessing; H.2.5 [Heterogeneous Databases]: Data transla-
tion; H.3.3 [Information Search and Retrieval]: Human
information processing; H.3.5 [Online Information Ser-
vices]: Commercial services, Web-based services

General Terms
Algorithms, Experimentation

Keywords
Structured Web Crawling, Web Wrappers, Online Databases.

1. INTRODUCTION
Structured Web crawling represents daily homework for

many industrial sectors. Spanning from shopping compar-
isons and publication tracking to social Web analysis and
competitive intelligence, collecting information from Web
databases has attracted considerable research efforts. An
interesting, yet challenging factor in this research field, is
that the design and implementation of deep Web extrac-
tion systems has been manipulated by different scientific
perspectives, such as natural language processing and ma-
chine learning. These different considerations generated a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
iiWAS2013 2-4 December, 2013, Vienna, Austria.
Copyright 2013 ACM 978-1-4503-2113-6/13/12 ...$15.00.

variety of Web extraction systems, which consequently in-
troduced new perspectives of comparing and assessing such
systems [3, 5, 6]. Ongoing research in this field concentrates
on certain open issues, such as wrapper maintenance, degree
of automation, crawling ethics, and user privacy.

In the last decade, many applications have been developed
to tackle enterprise deep Web mining. Systems like Lixto
[1], Wargo [11], and WICCAP [9] provide visual platforms
of Web database querying. Samples of wrapper induction
systems were introduced in [4, 13]; and useful approaches in
reducing Web crawling traffic can be found in [2, 10].

Whether the end user is a small firm that fetches few
Websites in a specific domain, or a large organization that
spends millions of dollars to build robust Web spiders for
multiple usages, data gathering optimization is a basic is-
sue. That is, the main goal behind Web database crawling
is to pick up every little piece of data from each available
results/detail page. This introduces an important question:
does the strategy of one crawling session fulfils this goal? In
other words, do we need auxiliary crawling session(s) to op-
timize the performance of Web database crawling? In this
paper we try to answer this question, by exploring the ex-
istence of unvisited detail pages during the basic crawling
session. We experimentally prove that for a few high-speed
Web databases and a back-end server with 12.5MB/s down-
load speed for the crawler, the basic crawling session failed
to visit all available detail pages.

The paper is organized as follows: Section 2 studies the
problem of dropped links of the single-session Web crawlers.
In Section 2.2 we introduce Structured-Web Threaded Cra-
wler (SWTC), a simple algorithm that handles this problem
by providing auxiliary sessions to the wrapper to optimize
its output. Section 2.3 gives an experimental test of SWTC.
In Section 3 we try (using SWTC algorithm) to accelerate
crawling time, by adjusting the sleeping time intervals of
each Web database. We conclude our work in Section 4.

2. CATCHING UNVISITED LINKS WITHIN
STRUCTURED WEB CRAWLING

There exist many technical factors that prevent Web wrap-
pers from accessing all required data in one crawling session,
but almost all of them can be summarized into the fact of
Web servers’ heterogeneity. Most of commercial Web wrap-
pers are designed to fetch multiple Web databases in par-
allel, which forces the wrapper to construct connections to
multiple Web servers with different bandwidths. As a result,
wrappers which are running with fixed crawling speed are
definitely threatened with losing data, simply due to differ-

ent connection and download speeds of the crawled sites.

2.1 Significance of Auxiliary Sessions in Struc-
tured Web Crawling

One approach to crawl Web servers with different band-
widths is to slow down the wrapper, for instance, by sleeping
for a certain time interval after each page visit. However,
this strategy has two main defects. Firstly, the total du-
ration of a crawling session will be significantly expanded,
which is not preferable for many end users, as in the field
of Business and Competitive Intelligence, where a company
needs timely-based analysis of the market. Secondly, as
we experimentally explain in Section 3.2, some servers (like
Amazon’s) react negatively to moderate/low speed crawlers.
On the other hand, if we speed up the crawler, by adding
more crawling threads, the system may be blocked by some
sites with limited bandwidth usage, or lose connections to
Web servers with moderate/low download speeds. Some
commercial Web wrappers (such as Visual Web Ripper1,
iMacros2, Screen-scraper Enterprise3, and Heliumscraper4)
tried to resolve the consequences of speeding up the crawling
session, by adding proxies as crawling interfaces, to prevent
the wrapper of being detected and blocked by Web servers.
However, this strategy has also its disadvantages, such as
the occasional unavailability to access some/all proxies, and
the need for regular update of the proxies list.

In order to overcome this dilemma, we introduce Structured-
Web Threaded Crawler (or SWTC), a very simple, yet ef-
fective algorithm to catch unvisited links during the main
crawling session. It achieves this goal by adding multiple
auxiliary sessions to the main crawler to optimize the num-
ber of visited detail pages and consequently the total amount
of retrieved data.

2.2 SWTC Algorithm
Numerous algorithms and techniques have been introduced

to detect and extract different types of data residing in
Web databases. The most well-known one is the simple
tree matching algorithm, which makes use of the availabil-
ity of representing a Web page as labeled ordered rooted
tree. The algorithm inspires its robustness and popularity
from the simple tree matching algorithm [12] and its vari-
ants. Another class of solutions to explore and mine Web
databases relies on algorithms adapted from machine learn-
ing, as it provides variable methodologies to build training
classifiers/sessions, which enables the given wrapper to ex-
plore Web databases upon predefined expertise within the
same/different domains of interest. Because of great moti-
vation to investigate this area of research, many Web data
mining systems based on machine learning techniques have
been implemented so far, such as SoftMealy [7] and WIEN
[8].

The aim behind SWTC algorithm introduced in this pa-
per, however, is not to give a particular model of detecting
and extracting data from Web databases. Rather, it in-
troduces a multi-threaded crawling environment that guar-
antees sufficient access to all available detail pages within
the crawling scope. The SWTC algorithm (see Figure 1)

1www.visualwebripper.com
2www.iopus.com/iMacros
3www.screen-scraper.com
4www.heliumscraper.com

starts by defining input and output variables of the threaded
crawler, such as queue of queries, queue of Web sites, max-
imum number of allowed threads and sleeping time after
accessing each detail page. It then calls NavigateDomain()
function, which launches the multi-threaded environment of
the crawler. The function then enters a nested loop of both
queries and Web sites to submit each query to each site. Af-
ter each query submission, the function navigates through
intermediate result pages of the given Web site, if any exist,
until reaching the link to the targeted detail page. After
obtaining this link, it passes it to the OpenPage() function,
which tries to open this link and read target data inside it.
If failed, both given query and site are stored in 2 auxiliary
queues, to be re-processed by the main algorithm. After
NavigateDomain() has completed the main crawling session
(i.e. crawling basic set of queries), the main algorithm checks
if auxiliary queues are not empty. If so, it calls Navigate-
Domain() repeatedly, until either all failed queries have suc-
cessfully obtained their detail pages or maximum iterations
have been achieved. SWTC is a linear algorithm, as it basi-
cally runs two nested loops of its input parameters (queries
and Websites) in NavigateDomain(). Besides, steps 9 - 12
of the SWTC guarantee the algorithm to terminate.

2.3 Testing SWTC Algorithm

2.3.1 Settings
In order to evaluate SWTC algorithm, we set a testing

environment under Gentoo Linux, with a download speed
of roughly 12.5MB/s. To simulate the average capacity of
commercial server bandwidths of small firms, we set the
maximum number of threads to 30 in all of our experi-
ments. We chose online bookshops as our target domain,
with limited size of queries and Web databases. The list
of queries consists of 1000 ISBNs (International Standard
Book Numbers) and ASINs (Amazon Standard Identifica-
tion Numbers). The targeted Web databases consist of 8
online bookshops, namely amazon.co.uk, amazon.de, ama-
zon.fr, amazon.it, amazon.es, weltbild.de, mayersche.de and
thalia.de.

2.3.2 Targeted Data
In order to obtain real assessment of our algorithm, we

aimed at extracting certain types of data within the crawling
sessions. We adopted the XPath language as our approach
to locate and extract different pieces of data. The goal be-
hind our choice is the popularity of XPath as a standard
tool in addressing specific elements in an XML document
(and HTML page as one of its dialects). Besides, XPath
language provides a powerful syntax to extract data in a
simple manner. Our set of targeted data includes textual
strings (like Title and Author Name), URLs (Also Bought
links), numbers (price and sales rank), and number of oc-
currences of certain element (e.g. Review List Customers
in thalia.de using XPath count() function). Table 1 gives
a detailed description of the target data of our experiments
along with its data types.

2.3.3 Evaluation and Results
It is likely with any threaded crawler to drop some links

through running, either because of visiting Web sites with
different server speeds, or due to connection time out errors.
As the aim is to prove the importance of adding auxiliary

Function OpenPage(q,s,l,st)

1. try

2. open link l and read target data from it

3. sleep for time interval st

4. except

5. auxiliaryQuery ← q

6. auxiliarySite ← s

Function NavigateDomain(Q,S,T,st)

1. launch threaded environment of maximum threads T

2. for s in S do

3. for q in Q do

4. submit query q to Website s

5. navigate inside s until obtain the link l of detail

page

6. OpenPage(q,s,l,st)

7. end for

8. end for

Algorithm SWTC

1. basicQuery ← list of queries

2. basicSite ← list of Websites

3. auxiliaryQuery ← auxiliary list of queries

4. auxiliarySite ← auxiliary list of Websites

5. maxThreads ← maximum number of threads

6. st ← sleeping time after accessing each detail page

7. maxIteration ← maximum trials of obtaining auxil-
iaryQuery detail pages within auxiliarySite

8. NavigateDomain(basicQuery,basicSite,maxThreads,st)

9. set counter= 0

10. while (auxiliaryQuery is not empty or counter <max-
Iteration) do

11. NavigateDomain(auxiliaryQuery, auxiliarySite,

maxThreads,st)

12. increment counter by 1

13. end while

Figure 1: The SWTC Algorithm.

crawling sessions to the algorithm, we decided to test the
SWTC algorithm under different sleeping time intervals af-
ter accessing each detail page, varying between 0 and 1.2
seconds.

To execute the algorithm, we translated it as Python script
and added it to our Linux server as a cron job. The script
was running for 20 days continuously, and the average num-
ber of detail pages (for basic and auxiliary crawling sessions)
was calculated. The results show that regardless of chang-
ing the sleeping time between visiting detail pages, the algo-
rithm misses links during its basic session. Figure 2 displays
the performance of SWTC in different sleeping time inter-

Table 1: Target data
Target Data Data Type

Title text
Author text

Publisher text
Version text

Language text
Price float

Also Bought Title text
Also Bought Author text

Also Bought Link url
Stars Number float

Sales Rank int
Review Number int

vals. The algorithm misses 8 detail pages in average within
small sleeping times (0 - 0.7 sec.). Detail pages missed by
the basic crawling session relatively decreased to 5 or 6 pages
within larger sleeping time scale (0.8 - 1.2 sec.)

Figure 2: Retrieved detail pages in both basic and
auxiliary sessions of SWTC.

It is also worth noting, that for all sleeping time intervals,
the SWTC algorithm uses only one auxiliary session to visit
the detail pages dropped from the basic session (see Figure
3). This is a normal outcome due to the limited experimen-
tal setup, which correspondingly generates a small number
of dropped detail pages. However, for larger crawling tasks
with Web databases of different bandwidths, the algorithm
is expected to consume more auxiliary sessions to optimize
its output. In future work we will expand our experimen-
tal scope to handle more crawling scenarios with different
domains.

Figure 3: Number of auxiliary sessions (AS) con-
sumed by SWTC.

3. ACCELERATING STRUCTURED WEB
CRAWLING

3.1 SWTC Reaction to Different Sleeping Time
Intervals

Time is a critical issue in structured Web crawling, either
for related front-end applications’ robustness and usability,
or for back-end running and maintenance. One of the most
interesting observations we noticed through our experiments
is the number of retrieved detail pages in each sleeping time
interval. Figure 4 describes the change in retrieved detail
pages (for both basic and auxiliary sessions) according to
different sleeping time. The SWTC achieves quite promiss-
ing results without sleeping. By increasing the sleeping time
by 0.1 second, the crawler performance slightly goes down
in sleeping range (0.1 to 0.7) seconds. After that the crawler
reaches its best performance at a sleeping time of 0.8 sec-
onds, before stabilizing between 0.9 and 1.1 seconds, until
giving its minimum output at a sleeping time of 1.2 seconds.
The chart indicates how far the sleeping time in threaded
structured Web crawling can affect the system performance.
At first glance, running the algorithm without sleeping time
at all seems a satisfying solution, since the average differ-
ence in retrieved detail pages between 0 and 0.8 seconds
(the best outcome) is only 1 page. However, if we run the
algorithm on larger domains, targeting Web databases with
variable bandwidths, then measuring the optimum sleeping
time can be quite useful in catching considerable number of
extra detail pages.

Figure 4: Change in retrieved detail pages over dif-
ferent sleeping time intervals.

3.2 Quick vs. Slow Web Databases
The significance of measuring the optimum sleeping time

within any threaded crawling algorithm is that it reflects the
corresponding variance in Web database response. There-
fore, it’s quite important to measure this variance, in order
to make the required sleeping time adjustments to each Web
database separately, or to the whole system. To simplify the
idea, we measured the number of retrieved detail pages for
each Web database separately at three sleeping time inter-
vals; the minimum (0 sec.), the maximum (1.2 sec.), and
the optimum (0.8 sec.). Figure 5 illustrates different out-
comes of our test Web databases, in response to the three
time intervals. While the Amazon group shows quick re-
sponse, with best outcome at 0 sleeping time, other Web
databases (e.g. thalia.de) return more detail pages with in-
creased sleeping time. These results confirm our assumption
of the importance of measuring the optimum sleeping time

within threaded Web crawling, as a critical factor of access-
ing the maximum available number of detail pages.

Figure 5: Change in retrieved detail pages for sam-
ple set of Web databases.

3.3 Adjust Sleeping Time of SWTC

3.3.1 Settings
Based on results obtained from Section 3.2, we classified

our domain Web databases as quick and slow sites. Table
2 gives a list of this classification. In order to accelerate
our SWTC algorithm without losing retrieved detail pages,
we made a simple adjustment in the sleeping time based on
each Web database response. For this set of experiments we
re-run the algorithm for the best 2 sleeping time intervals
(0 and 0.8 sec.) obtained in Section 2.2. Besides, we run
two other scripts of SWTC; one decreases the sleeping time
for quick Web databases to 0 sec. and the other increases
it for slow databases to 0.8 sec. Sleeping time intervals of
the 4 experiments are listed in Table 3. The four scripts
of SWTC were running once again on the same server and
domain settings for 20 continuous days, and the average time
and retrieved detail pages were calculated.

3.3.2 Results
The results of the second set of experiments (Figure 6) give

two important outcomes. Primarily, in contrast to the first
experimental setup, running the algorithm without sleeping
outperforms adding a sleeping time of (0.8 sec.) in terms
of retrieved detail pages, which reflects the high variability
of threaded Web crawling to sleeping time, and correspond-
ingly the need for regular check and maintenance of this
parameter in the long run.

Figure 6: Results of the second set of experiments.

The second observation is that Experiment #4 gives ap-
proximately the same retrieving power as Experiment #1

Table 2: Web databases classification according to their response
Web DB amazon.co.uk amazon.de amazon.fr amazon.it amazon.es weltbild.de mayersche.de thalia.de
Response Quick Quick Quick Quick Quick Quick Slow Slow

Table 3: Sleeping time adjustments (in sec.) for the second set of experiments
Experiment #1 Experiment #2 Experiment #3 Experiment #4

st= 0 st= 0.8 st= 0 st= 0.8
for slow sites st= 0.8 for slow sites st= 0

(with no sleeping). However, Experiment #4 takes less time
than Experiment #1 (5 seconds difference in average). This
means that initializing SWTC algorithm at high sleeping
time along with suitable time adjustment for quick Web
databases gives us the optimum performance of the threaded
crawler in terms of both crawling time and retrieved detail
pages.

It’s also worth to mention, that during the second set of
experiments we could accelerate the SWTC algorithm by
1.1% by adjusting the sleeping time for both quick and slow
Web databases. This is a small percentage corresponding to
our limited experimental settings, but on commercial long
term run over more Web databases, this percentage can in-
crease linearly with crawler inputs, which implicitly reflects
the importance of measuring the speed of Web database re-
sponse for effectively building robust Web wrappers.

4. CONCLUSION AND FUTURE WORK
In this paper we introduced a simple algorithm to optimize
the performance of structured Web crawling. We investi-
gated the problem of detail pages that are missed by wrapper
basic session, and implemented an algorithm that catches
those pages by adding auxiliary sessions. After that we tried
to reduce the time consumed by our threaded crawling al-
gorithm, by adjusting the sleeping time intervals between
Web databases. The experimental results show promising
outcome in terms of both maximization of retrieved data
and acceleration of crawling time.

For the future work, we will try to broaden the testing
environment to include more domains with different input
settings. Domains of interest include Real Estate, Flying
Tickets Booking and Hotels Reservations. Our future se-
lection will depend on several factors: (i) multiple set of
queries used (e.g. departure date, arrival date, destination
in Flying Tickets Booking domain), (ii) multiple detail page
links within each result page, and (iii) noticeable changes in
HTML structure in the same/different Web database. Using
such integrated features shall provide deeper assessment of
the algorithm in both design and implementation aspects.

5. REFERENCES
[1] R. Baumgartner, S. Flesca, and G. Gottlob. Visual

web information extraction with lixto. In Proceedings
of International Conference on Very Large Data
Bases, pp. 119-128, 2001.

[2] B. B. Cambazoglu, F. Junqueira, V. Plachouras, and
L. Telloli. On the feasibility of geographically
distributed web crawling. In proceedings of 3rd
International ICST Conference on Scalable
Information Systems, ICST, 2008.

[3] C.-H. Chang, M. Kayed, M. R. Girgis, and K. F.
Shaalan. A survey of web information extraction
systems. In IEEE Transactions on Knowledge and
Data Engineering Vol. 18 Issue 10, pp. 1411-1428,
2006.

[4] W. Cohen, M. Hurst, and L. Jensen. A flexible
learning system for wrapping tables and lists in html
documents. In Proceedings of International Conference
on World Wide Web, 2002.

[5] B. R. El-Gamil, W. Winiwarter, B. Boẑić, and
H. Wahl. Deep web integrated systems: current
achievements and open issues. In 13th Conference on
Information Integration and Web-based Applications
and Services (iiWAS 11), 2011.

[6] E. Ferrara, P. D. Meo, G. Fiumara, and
R. Baumgartner. Web data extraction, applications
and techniques: A survey. In ACM Computing
Surveys, Vol. V, No. N, pp. 1-48, 2012.

[7] C.-N. Hsu and M.-T. Dung. Generating finite-state
transducers for semi-structured data extraction from
the web. In Information Systems. Issue 23, Vol. 9, pp.
521-538, 1998.

[8] N. Kushmerick. Wrapper induction: efficiency and
expressiveness. In Artificial Intellegence. Issue 118,
Vol. 1-2, pp. 15-68, 2000.

[9] Z. Li and W. K. Ng. Wiccap: From semi-structured
data to structured data. In Proceedings of 11th IEEE
International Conference and Workshop on the
Engineering of Computer-Based Systems (ECBS’04),
2004.

[10] S. Mishra, A. Jain, and A. K. Sachan. A query based
approach to reduce the web crawler traffic using http
get request and dynamic web page. In International
Journal of Computer Applications Vol. 14 - No.3,
2011.

[11] J. Raposo, A. Pan, M. Álvarez, J. Hidalgo, and
A. Vina. The wargo system: semi-automatic wrapper
generation in presence of complex data access modes.
In Proceedings of Workshop on Database and Expert
Systems Applications, 2002.

[12] S. Selkow. The tree-to-tree editing problem. In
Information processing letters Vol. 6 Issue 6, pp.
184-186, 1977.

[13] S. Zheng, R. Song, J. Wen, and C. Giles. Efficient
record-level wrapper induction. In Proceedings of
ACM International Conference on Information and
knowledge management, 2009.

