Supplementary Material
Efficient Depth Propagation in Videos with GPU-acceleration

Frame 1 Frame 100

Example result of proposed 2D-to-3D conversion (Tsukubal).
Top: Input video and user input; The depth scribbles in frame 1 and frame 100 are color coded.
Bottom: 2D-to-3D conversion result.

near [N | for .

Supplementary Material
Efficient Depth Propagation in Videos with GPU-acceleration

Frame 1 Frame 10 Frame 21

Example result of proposed 2D-to-3D conversion (Child).
Top: Input video and user input; The depth scribbles in frame 1 and frame 21 are color coded.
Bottom: 2D-to-3D conversion result.

Supplementary Material
Efficient Depth Propagation in Videos with GPU-acceleration

Video / MSE [1] with OF | [1] without OF | [4] Ours, with OF Ours, without OF
Palace 1.01 1.39 8.51 |0.17 0.17
Parade 0.23 0.23 6.87 |0.12 0.13
City 0.32 0.56 10.30 | 0.08 0.09
Football 0.23 0.33 495 |0.08 0.10
Stairs 0.19 0.31 1.56 |[0.12 0.12

Quantitative evaluation and comparison to [1] and [4].
MSEs (mean squared errors) are averaged over all frames and multiplied by 100. Results for [1] and [4] are
taken from [1]. For this evaluation the same video, user-input and disparities as in [1] were used to
generate resulting disparity maps. For the not optimized algorithm, i.e., [1], and our optimization the
results for the algorithm with and without usage of optical flow (OF) are listed. All tested algorithms use
the same method to estimate the used OF fields, which makes the evaluation independent of the quality of
the performed motion estimation.

Supplementary Material
Efficient Depth Propagation in Videos with GPU-acceleration

Video / Runtime

Resolution

Not optimized [1] (C++)

Our optimization of [1] (CUDA)

City

699 x 232 x 19

440

12

Parade 689 x 282 x 11 | 286 7

Palace 702 x 278 x 10 | 267 7

Stairs 702 x279x 10 | 590 12
Football 669 x 282 x20 |974 27
Child 600 x 338 x 21 | 530 28
Tsukuba50 640 x480x 17 |729 15
Tsukuba380 640 x 480 x 18 | 705 16

Computational efficiency evaluation of the joint segmentation and propagation step in the
un-optimized [1] and our optimized 2D-to-3D conversion algorithm.

The table lists the runtimes in seconds. In this comparison, the joint segmentation and propagation step of
the un-optimized and our optimized algorithm take the same input videos, user-input, disparities and

parameters.

Supplementary Material
Efficient Depth Propagation in Videos with GPU-acceleration

Video / Runtime | Video resolution | Our optimized approach | Approach from [1]
(CUDA) (CUDA)
City 699 x 232 x 19 0.62 1.36
Parade 689 x 282 x 11 0.14 0.36
Palace 702 x 278 x 10 0.13 0.34
Stairs 702 x279x 10 0.22 0.75
Football 669 x 282 x 20 0.44 1.70
Child 600 x 338 x 21 1.06 2.15
Tsukuba50 640 x 480 x 17 0.27 1.11
Tsukuba380 640 x 480 x 18 0.36 1.12

Computational efficiency evaluation of region-wise filtering (i.e., regularization step) in the
un-optimized [1] and our optimized 2D-to-3D conversion algorithm.

The table lists the runtime in seconds. To emphasize the algorithmic contribution in this optimization, both
region-wise filtering approaches were implemented in CUDA. In [1] each region is filtered in a separate
filtering step. Contrary, our approach filters all regions separately but in a single filtering step. Both

approaches applied on the same videos and number of regions.

Supplementary Material
Efficient Depth Propagation in Videos with GPU-acceleration

Approach from [1], C++
implementation (1063 regions)

32768 -
. Approach from [1], CUDA
4096 - 1945.29 4199.85 implementation (1063 regions)
. Our approach, CUDA
512 - 182.84 334.40 implementation (1063 regions)
64 -
Approach from [1], C++
g - implementation (2295 regions)
0.65 Approach from [1], CUDA
1- - implementation (2295 regions)
0 - . Our approach, CUDA
Runtime of different region-wise filter implementations in seconds. implementation (2295 regions)

Computational efficiency evaluation of region-wise filtering (i.e., regularization step).
Comparison of runtimes between the C++ and CUDA implementation of the initial region-wise filtering
approach from [1] (i.e., each region is filtered in a separate filtering step) and our CUDA implementation of
our region-wise filtering (i.e., all regions are separately filtered in one filtering step). The comparison is
performed for a segmentation into 1063 and into 2295 regions. The chart lists the runtime of different
implementations in seconds for a video with a resolution of 600 x 255 x 20 pixel.

Supplementary Material
Efficient Depth Propagation in Videos with GPU-acceleration

. C++ implementation

. Naive CUDA implementation

16 15.0 without optimization of memory
14 access.
- CUDA, usage of texture memory
to optimize memory access,
10 implementation provided by
NVIDIA SDK 4.1.
8
I CUDA, transposed image matrix
6 for optimized memory access.
4 (This implementation is used in
our optimized 2D-to-3D
2 conversion).
0

Runtime of different filter implementations in milliseconds.

Computational efficiency evaluation of different box filter implementations in CUDA, which
is used in the regularization step (i.e., guided filtering) of the 2D-to-3D conversion algorithm.

The chart lists the runtime of different implementations in milliseconds for an image with a resolution of
1024 x 1024 pixel. Note that the guided filter, which is used in the interpolation step of the 2D-to-3D
conversion algorithm, is implemented as a series of box filters. Thus, it is vital to efficiently implementation
of a box filter to optimize the 2D-to-3D conversion algorithm from [1].

