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Abstract

This thesis addresses the problem of cost-efficiently converting monoscopic (2D) videos to
stereoscopic (3D) videos. Common practices to perform such a 2D-to-3D conversion are labor-
intensive manual conversions, which are typically used for high-quality 3D cinema productions,
and fully-automatic conversions of lower conversion quality, which may be integrated into, e.g.,
(auto-)stereoscopic TVs. In this thesis we focus on semi-automatic 2D-to-3D conversions, which
can be seen as a compromise between fully-automatic and manual techniques. Such approaches
are typically based on sparse user-given disparity (or depth) information, which is propagated to
each pixel in a 2D video by assuming a color constancy model. This process ideally requires only
minimal user input and efficiently generates disparity maps of high conversion quality, which
are suitable for rendering a second 2D video that completes the 3D video. In order to avoid
common artifacts related to such propagations, e.g., over-smoothed results and spatio-temporal
or perceptual incoherencies, we exploit spatio-temporal segmentation information. The thesis
presents two novel semi-automatic 2D-to-3D conversion algorithms that view segmentation as an
integral part of the conversion process and are based on comfortable user input in the form of
sparse scribbles drawn in the first (and last) frame of a 2D video.

Our first 2D-to-3D conversion algorithm tackles 2D-to-3D conversion and segmentation in a
joint approach. It propagates available disparities between neighboring pixels while assigning them
to the same segment. In this manner, our algorithm generates disparity maps that capture object
borders in the 2D video and contain smooth disparity changes within segments and over time, which
is challenging for currently available algorithms. We also provide a scalable implementation that
achieves interactive runtimes of one frame per second (resolution of approximately 0.3 megapixels).

The second 2D-to-3D conversion algorithm takes a step towards the generation of perceptually
coherent disparity maps. In particular, it enables temporal disparity interpolations that are
performed in accordance with motion-caused occlusions between segments. This results in
spatio-temporally coherent disparity maps in which disparities of moving objects harmonize with
those of nearby objects. The presented segmentation algorithm, used in the conversion algorithm,
relies on a spatio-temporal filtering scheme and, thus, achieves fast processing speeds (250 frames
per second for a video with a resolution of approximately 0.2 megapixels per frame).

We compare our own algorithms with different semi-automatic 2D-to-3D conversion algo-
rithms suggested in the literature and achieve results of high conversion quality. In this context,
our algorithms outperform a well-established conversion algorithm. As opposed to most earlier
studies, our final evaluation study is performed under consideration of different scribbling strate-
gies and provides practical insights into the annotation process by investigating the performance
of various scribble placement techniques in conjunction with different 2D image content.
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Kurzfassung

Diese Arbeit widmet sich der kosteneffizienten Konvertierung von monoskopischen (2D) zu
stereoskopischen (3D) Videos. Dabei stellen semi-automatische 2D-zu-3D Konvertierungsver-
fahren einen Kompromiss zwischen professionellen, aber aufwändigen manuellen und qualitativ
schlechteren, vollautomatischen Verfahren dar. Semi-automatische Verfahren propagieren, unter
der Annahme von Farbkonsistenz, von BenutzerInnen gegebene Tiefeninformation (Disparität)
über das komplette 2D-Video. Die so generierten Disparitätsvideos können für das Erstellen
eines zweiten 2D-Videos, welches das 3D-Video vervollständigt, verwendet werden. Ein ideales
Konvertierungsverfahren vereint Faktoren wie hohe Qualität der generierten Disparitätsvideos,
geringen Arbeitsaufwand für BenutzerInnen und kurze Laufzeiten miteinander. Dabei gilt es,
typische Artefakte wie übermäßiges Glätten, raum-zeitliche Inkohärenz oder Konflikte zwischen
generierter und im 2D-Video wahrgenommener Tiefe zu verhindern. Der wissenschaftliche
Beitrag dieser Arbeit umfasst zwei semi-automatische 2D-zu-3D Konvertierungsalgorithmen,
in denen raum-zeitliche Segmentierung einen integralen Bestandteil darstellt. Sie basieren auf
groben Initialisierungen mit Disparitäts-Scribbles im ersten (und letzten) Frame des 2D-Videos.

Der erste Algorithmus propagiert die spärlich vorgegebenen Disparitäten im Zuge des Segmen-
tierungsprozesses auf das gesamte Video. Disparitäten werden zwischen Nachbarpixeln propagiert,
wenn diese zu einem Segment zusammengefasst werden. Diese Vorgehensweise verhindert über-
mäßiges Glätten von Disparitäten über Segmentgrenzen und ermöglicht raum-zeitlich kohärente
Disparitätsübergänge innerhalb von Segmenten. Eine skalierbare Implementierung erlaubt effizi-
ente Konvertierungsvorgänge (ein Frame pro Sekunde für Auflösungen von 0.3 Megapixel).

Der zweite Algorithmus beschäftigt sich mit Konflikten zwischen generiertem und im ursprüng-
lichen 2D-Video wahrgenommenen Tiefeneindruck. Der Algorithmus bindet bewegungsbedingte
Verdeckungen im 2D-Video in die zeitlichen Interpolierungen von Disparitäten ein. Dies führt zu
realistischeren Tiefendarstellungen von Objekten, die sich im Laufe des Videos in der Tiefe bewe-
gen. Der dabei verwendete Segmentierungsalgorithmus basiert auf effizienten Filteroperationen
und erreicht geringe Laufzeiten (250 Frames pro Sekunde für Auflösungen von 0.2 Megapixel).

In dieser Arbeit entwickelte Algorithmen werden mit semi-automatischen 2D-zu-3D Konver-
tierungsalgorithmen aus der Literatur verglichen und generieren dabei Disparitätsvideos von hoher
Qualität. Die Qualität ihrer Ergebnisse überrtrifft die eines etablierten Algorithmus. Eine abschließen-
de Evaluierung berücksichtigt zusätzlich verschiedene Strategien der Scribble-Platzierung, welche
die Konvertierungsergebnisse stark beeinflussen können. Eine Untersuchung dieser Strategien im Zu-
sammenhang mit verschiedenen 2D-Bildinhalten sowie ihrer Robustheit gegenüber Ungenauigkeiten
bei der Scribble-Platzierung gibt praktische Einblicke in den Scribble-basierten Initialisierungspro-
zess, welchem in der vorhandenen Literatur nur geringe Aufmerksamkeit geschenkt wird.
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CHAPTER 1
Introduction

1.1 Motivation

Over the past years, the three-dimensional (3D) viewing experience has become a main attraction
of the entertainment industry. 3D movies were successfully released (e.g., Avatar [176]), consumer
stereo displays and 3DTV sets are commercially available, first commercial 3DTV channels
(e.g., Sky 3D [140]) air 3D content and YouTube [172] allows users to upload and watch 3D videos.
To maintain the success of the 3D technology, its practical usage is a crucial point. Moreover, the
availability of 3D content is a bottleneck. In this context, generating new 3D content, as well as
the conversion of existing two-dimensional (2D) content to 3D are important topics. Generally,
there are several ways to generate 3D content that can be viewed on stereoscopic devices,
including (1) the usage of a stereo camera during recording (e.g., Avatar [176]), (2) conversion
of existing 2D content to 3D in post-production (e.g., Star Wars [178]) and (3) (re-)rendering
computer animated content with 3D models (e.g., Toy Story [177]). While the latter approach is
only possible for computer animated content, the first two approaches address recorded content.
Contrary to the creation of 3D videos (stereoscopic videos) with a stereo camera, 2D-to-3D
conversion techniques do not require costly and often bulky hardware. When directly recording
3D videos, a stereo camera captures two shifted views of the same scene. The shift between the
two views at each point is referred to as disparity (and is inversely proportional to depth). On
the other hand, conversion techniques are based on only one 2D view (monoscopic video) and
generate disparities (and eventually a second view). The main advantage of conversion techniques
is that the need for 3D content has not to be known before recording a video. Hence, existing
monoscopic videos, such as older popular movies (e.g., Star Wars [178]) can be converted to 3D
without re-recording them. This is especially interesting in the context of resolving the mentioned
bottleneck concerning the availability of 3D content. Additionally, 2D-to-3D conversion enables
the possibility to create 3D content from self-recorded 2D content.

The fundamental motivation of this thesis is to provide practical 2D-to-3D conversion al-
gorithms that enable conversions of monoscopic image and video content. These algorithms
generate new 3D content from 2D content and strive for high-quality depth impressions.

1
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1.2 Problem Statement

This thesis addresses the problem of converting monoscopic (2D) videos to stereoscopic (3D)
videos. Existing 2D-to-3D conversion techniques can be categorized according to the user
involvement that is required during the conversion process [141]: manual, fully-automatic
and semi-automatic 2D-to-3D conversion techniques. In manual (computer-aided) conversion
techniques, 3D artists partition (rotoscope) each frame of a video into objects/surfaces by tracing
their outlines and reconstruct the scene by assigning a depth model to each of these segments. This
process is very labor-intensive (e.g., StereoD [143] converted 297000 frames in 60 weeks [137]),
but can result in 3D content of high conversion quality. Thus, manual 2D-to-3D conversion is
typically only used for high-quality 3DTV cinema productions.

Fully-automatic conversion techniques investigate monocular depth cues (i.e., that can be
obtained from only one view) such as motion [105] or perspective [38] and perform the 3D
conversion without any user interaction. Thus, automatic conversion techniques are based on
the availability of monocular depth cues in the scenes that should be converted to 3D. In fact,
automatic conversion techniques attempt to solve a highly ill-posed problem which is generally
not invertible, namely recovering the scene geometry which was lost during the projection
of the 3D scene onto the 2D image plane of the camera. The complexity of this task and the
mentioned restrictions concerning the scenes typically cause a lower conversion quality [119,141].
Furthermore, due to the lack of user interaction, the results can be difficult to control.

To make this highly ill-posed problem more feasible, semi-automatic 2D-to-3D conversion
techniques keep the user in the loop. Unlike labor-intensive manual techniques (e.g., [141, 164])
or restrictive fully-automatic techniques (e.g., [38,105]), the goal of semi-automatic techniques is
to generate 3D videos from arbitrary 2D videos with only little user interaction. The conversion
quality of semi-atuomatic techniques ideally matches the conversion quality of manual ones.
Thus, this group of conversion techniques can be seen as a compromise between fully-automatic
and manual ones. Typically, semi-automatic 2D-to-3D conversion algorithms propagate sparse
user-given disparity information to the remaining image or video, by using global optimization
(e.g., [56, 163]), filtering techniques (e.g., [156]) or segmentation (e.g., [91, 165]). Various
semi-automatic 2D-to-3D conversion approaches will be discussed in Chapter 2.

In general, 3D video content generation algorithms, including those for 2D-to-3D conversion,
attempt to provide a spatio-temporally coherent 3D impression. While abrupt temporal disparity
changes (flickering) can be distracting and should be avoided, smooth temporal disparity changes
over time (e.g., object approaches camera) should be supported. Ideally, such a temporal disparity
change is perceptually coherent. Specifically, the disparities of the object that moves in depth,
should harmonize with those of nearby objects and occlusions should be taken into account.
Two further problems in this context are edge-sharpness mismatches and the cardboard effect,
which are caused by over-smoothing of disparity edges and not enough disparity variation within
objects, respectively [15, 158]. In particular, spatial disparity edges should be aligned with color
edges and indicate an abrupt disparity transition at object borders. Ideally, disparity transitions
inside objects are smooth. This provides objects with volume when watched in 3D and avoids
that they appear unnaturally flat. Another crucial point in 3D content generation, especially when
processing video material, is the scalability of a conversion algorithm. For practical usage, fast
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processing speeds and little required user-interactions are desirable.
In summary, semi-automatic 2D-to-3D-conversion techniques pose a promising alternative to

high-quality, but labor-intensive manual techniques and restrictive, fully-automatic techniques.
This thesis focuses on semi-automatic techniques, i.e., on generating 3D content based on
sparse user input and with high conversion quality. In this context, common problems, such as
spatio-temporally coherent disparity changes, over-smoothing and scalability, are addressed.

1.3 Contributions

This thesis suggests novel 2D-to-3D conversion algorithms that produce 3D content from mono-
scopic 2D content and sparse user-given disparity information. The provided 2D-to-3D conversion
algorithms strive for high conversion quality, which includes spatio-temporal and perceptual coher-
ence and to avoid common artifacts such as over-smoothing of disparities at object borders. The
contributions of these algorithms rely on spatio-temporal video analysis techniques. In particular,
we exploit the similarity of the problem of semi-automatic 2D-to-3D conversion and the problem
of video (object-)segmentation. Semi-automatic conversion algorithms propagate sparse user-
given disparities to the remaining pixels of the 2D image or 2D video. During this propagation
similar disparities are assigned to pixels that are similar (e.g., in terms of color). Likewise,
segmentation refers to the partitioning of scenes (e.g., a 2D video) into regions (segments) which
are homogenous in a certain feature space (e.g., color). In this thesis, we investigate the joint
segmentation and 2D-to-3D conversion of 2D videos. Contrary to existing 2D-to-3D conversion
algorithms that are based on segmentation algorithms (e.g., [91,165]), in the conversion algorithms
that are presented in this thesis, the role of segmentation goes beyond segment-wise disparity
assignments. Instead, segmentation is viewed as an integral part of the conversion process. More
precisely, the 2D-to-3D conversion’s disparity propagation takes place during the segmentation
process. This joint approach is, to the best of our knowledge, new for 2D-to-3D conversion.

The fusion of segmentation and 2D-to-3D conversion has several advantages. First, a joint
conversion and segmentation process provides the opportunity to transfer the knowledge of the
well-studied field of video segmentation to the less explored field of semi-automatic 2D-to-3D
conversion. This also includes the usage of its efficient algorithms.

Second, spatio-temporal grouping information enables potentially more stable disparity prop-
agation and provides additional information that can be exploited during the 2D-to-3D conversion
process. This can, for example, be achieved by using more global similarity measures based on
intermediate segmentation results instead of per-pixel measures. Additionally, spatio-temporal
grouping information facilitates the distinction between areas where smooth disparity variations
are desired (i.e., inside objects, to avoid the cardboard effect) and areas where smooth disparity
variations should be prevented (i.e., at object borders to avoid edge-sharpness mismatches). This
also extends to the temporal domain, where temporal grouping information can be used to perform
smooth disparity interpolations over time or can be further analyzed to consider interactions
between different video objects in the 2D-to-3D conversion process.

In our first algorithm, the 2D-to-3D conversion is performed jointly with a (automatic)
graph-based video segmentation. In Chapter 4, our proposed joint segmentation and disparity
propagation process assigns spatio-temporally neighboring pixels that are similar in color to the
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same disparity and to the same segment. In this way sparse user-provided disparity information is
propagated over the entire 2D video. The advantage of our approach over previous work comes
from the direct use of the segmentation technique during the propagation process. It preserves
disparity edges at object borders, which is challenging for previous works. A subsequent selective
filtering step enables disparity changes within spatio-temporal segments and over time and
yields the final disparity map. The joint propagation/segmentation and filtering steps are further
optimized in a scalable implementation on recent graphics architecture (GPU) that leverages
modern multicore technology. With this implementation our 2D-to-3D conversion algorithm
achieves runtimes of one frame per second (fps) for a video with a resolution of 640 × 480 pixels
per frame. Thus, it scales to longer videos, i.e., it is still suitable when processing longer videos.
Quantitative evaluations show that the proposed algorithm generates results of high conversion
quality and outperforms a well-established semi-automatic 2D-to-3D conversion approach.

In our second contribution (Chapter 5), we introduce a fast (e.g., 250 fps for a video with a
resolution of 620 × 360 pixels) approach for interactive video object segmentation and alpha
matting. It is then extended to perform 2D-to-3D conversions. Our interactive segmentation and
alpha matting approach is based on recent work that solves label-based optimization problems
within a specific filtering scheme. We show that using this filtering scheme not only spatially, but
also temporally enables our segmentation algorithm to achieve temporally coherent and flicker-
free video object segmentations. The provided video object segmentations further include alpha
mattes for the extraction of semi-transparent pixels at object borders that are likewise temporally
coherent. The subsequently developed 2D-to-3D conversion algorithm considers the special
requirements of 2D-to-3D conversion, including the extended pool of labels (multiple disparities
instead of only fore- and background in the interactive segmentation) and smooth disparity
variations within objects that are obtained with a simple disparity blending approach. In this
context, a main contribution of our proposed 2D-to-3D conversion algorithm is the introduction
of models for the temporal interpolation of disparities that exploit spatio-temporal grouping
information. These temporal disparity models allow us not only to capture the disparity change
of objects (i.e., segments) that move towards or farther away from the camera, but also to ensure
that the disparities of these moving objects harmonize with those of nearby objects (i.e., are
perceptually coherent). To achieve the latter, we analyze the motion in a video and perform a
temporal disparity interpolation that is restricted by disparities of neighboring (occluding) objects.
In this manner, we generate perceptually coherent disparity maps that contain smooth temporal
disparity changes. Quantitative evaluations show that the proposed algorithms in Chapter 5,
i.e., the interactive video object segmentation algorithm and the 2D-to-3D conversion algorithm,
generate temporally coherent object segmentations and 2D-to-3D conversions. Comparisons of
both algorithms with their respective related works indicate that our algorithms are competitive.
In case of the 2D-to-3D conversion algorithm, the added functionality of capturing perceptually
coherent disparity changes over time can improve our conversion results.

The final contribution of this thesis is a systematic evaluation of different semi-automatic 2D-
to-3D conversion techniques including our newly proposed methods. Contrary to previous work,
the evaluations in Chapter 6 are performed under consideration of the given user input. The given
user inputs are sets of scribble-based annotations that follow different strategies regarding their
placement within an object. They include minimalistic and effortless scribbling strategies as might
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be drawn from a system-unaware user as well as more advanced and labor-intensive scribbling
strategies that take the content of the 2D images more specifically into account. We generate these
annotations with an algorithm that simulates a user who takes on these different strategies and
automatically places sparse scribbles in 2D images. The disparities of these sparse scribbles are
taken from ground truth data which is provided with the 2D images that are used in our evaluation.
We perform three experiments that focus on (i) the conversion accuracy, (ii) the robustness
to small variations in the scribbles’ spatial positions and (iii) the error tolerance of 2D-to-3D
conversion techniques to inaccurate scribble inputs. In an additional fourth series of experiments,
(iv) the ideal scribbling strategy under consideration of the given 2D content is investigated. This
provides practical insights for the scribble-based annotation process. While none of the tested
2D-to-3D conversion techniques excels in combination with all tested scribbling strategies in
all of our experiments, the graph-based algorithm from Chapter 4 together with a scribbling
strategy that places scribbles close to object borders, throughout our experiments generated
conversion results that are close to their reference solutions. Our evaluations further demonstrate
that segmentation algorithms can improve the spatial coherence and reduce over-smoothing when
being used in the 2D-to-3D conversion process.

1.4 Resulting Publications

The work presented in this thesis resulted in the following publications:

1. N. Brosch, C. Rhemann and M. Gelautz. “Segmentation-Based Depth Propagation in
Videos“, Proceedings of the Austrian Association for Pattern Recognition (OAGM) Work-
shop, 2011. [24] Best student paper award.

2. N. Brosch, A. Hosni, C. Rhemann and M. Gelautz. “Spatio-temporally Coherent Interactive
Video Object Segmentation via Efficient Filtering“, Proceedings of the Joint Pattern Recog-
nition Symposium of the German Association for Pattern Recognition and the Austrian
Association for Pattern Recognition (DAGM/OAGM), 2012. [22]

3. M. Ivancsics, N. Brosch and M. Gelautz. “Efficient Depth Propagation in Videos with GPU-
Acceleration“, Proceedings of the International Conference on Visual Communications and
Image Processing (VCIP), 2014. [67]

4. N. Brosch, T. Schausberger and M. Gelautz. “Towards Perceptually Coherent Depth Maps in
2D-to-3D Conversion“, Proceedings of the Electronic Imaging Conference (EI), 2016. [25]

Although their content is not explicitly included in this thesis, the work presented in this
thesis additionally contributed to the following publications:

1. N. Brosch, A. Hosni, L. He, G. Ramachandran and M. Gelautz. “Content Generation For
3D Video/TV“, Journal of Elektrotechnik und Informationstechnik (e & i), 2011. [21]

2. S. Ghuffar, N. Brosch, N. Pfeifer and M. Gelautz. “Motion Segmentation in Videos from
Time of Flight Cameras“, Proceedings of the International Conference on Systems, Signals
and Image Processing (IWSSIP), 2012. [47]
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3. S. Ghuffar, N. Brosch, N. Pfeifer and M. Gelautz. “Motion Estimation and Segmentation in
Depth and Intensity Videos“, Journal of Integrated Computer-Aided Engineering (ICAE),
2014. [48]

4. N. Brosch, M. Nezveda, M. Gelautz and F. Seitner. “Efficient Quality Enhancement
of Disparity Maps Based on Alpha Matting“, Proceedings of the Electronic Imaging
Conference (EI), 2014. [23]

5. M. Nezveda, N. Brosch, F. Seitner and M. Gelautz. “Depth Map Post-Processing for
Depth-Image-Based Rendering: A User Study“, Proceedings of the Electronic Imaging
Conference (EI), 2014. [106]

1.5 Structure of the Work

This thesis is organized in seven chapters. The current chapter, Chapter 1, provided a general
overview of the fundamental motivation, the problem statement and the contributions of this
work. In the following, the remaining chapters of the thesis are briefly discussed and related to
the publications that were listed before.

• Chapter 2 gives an overview of existing 3D content generation approaches. In this overview,
special emphasis is put on semi-automatic 2D-to-3D conversion techniques, which are the
focus of this thesis. Some parts of the text are take from our published paper [21].

• Chapter 3 discusses fundamental concepts of spatio-temporal video analysis that are
relevant to 2D-to-3D conversion. In particular, we discuss automatic and interactive video
segmentation techniques, interactive (disparity) annotation approaches and edge-aware
interpolation techniques for image and video data. These concepts are exploited in the
following chapters of the thesis. Chapter 3 further provides a brief overview of different
evaluation benchmarks and evaluation strategies for 2D-to-3D conversion results.

• In Chapter 4, we introduce a novel approach for segmentation-based 2D-to-3D conversion
for videos and discuss its efficient implementation using multicore technology. It exploits
similarities of 2D-to-3D conversion and segmentation in a joint approach, which reduces
over-smoothing at object borders. The main text of this chapter is a compilation of our
published papers [24] and [67] with additional results and experiments. The efficient
implementation of the segmentation-based 2D-to-3D conversion approach was performed
in the master’s thesis [68] that was supervised by the author of this dissertation.

• In Chapter 5, we present a fast (250 fps for frames with a resolution of 620 × 360 per
frame) interactive video object segmentation approach and extend it to perform 2D-to-3D
conversions. The focus of the latter is to model perceptually coherent disparity changes
over time. We aim to capture the changing disparity of objects that approach the camera
or diverge from the camera and ensure that their disparities harmonize with disparities
of nearby moving objects. In this chapter, parts of the text are taken from our published
papers [22], [47, 48] and [25] with additional results and experiments. The 2D-to-3D
conversion approach presented in this chapter was implemented in the master’s thesis [136]
under supervision of the author of this dissertation.
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• Chapter 6 provides a systematic evaluation of different semi-automatic 2D-to-3D conver-
sion techniques, including our algorithms that are presented in this thesis. This evaluation
is carried out on a dataset of 2D images with ground truth data and considers the given user
input, i.e., different scribbling strategies. In this context, we investigate (i) the conversion
accuracy, (ii) the robustness to small position shifts of scribbles, (iii) the error tolerance
to inaccurate scribbles and (iv) the ideal scribbling strategy for specific 2D image regions.
In this manner, we reveal strengths and weaknesses of the tested 2D-to-3D conversion
techniques in conjunction with different scribbling strategies and provide practical insights
concerning the scribble-based annotation process.

• Chapter 7 concludes this thesis and discusses possible future research questions in the field
of semi-automatic 2D-to-3D conversion.





CHAPTER 2
State-of-the-Art of 2D-to-3D

Conversion

This chapter gives a general overview of 3D content generation approaches that consider stereo-
scopic and monoscopic content as input. This overview and the subsequent discussion of prior
work put emphasis on semi-automatic 2D-to-3D conversion which uses monoscopic content.

2.1 Principles of 3D Content Generation

The key idea behind the generation of 3D content is to provide viewers with an illusion of depth
as seen in the real world. In general, the stereoscopic depth experience emerges when watching
two slightly shifted views of the same scene, each with one eye. In 3D cinemas, the separation
of the two views is accomplished by using special glasses that direct each presented view to the
corresponding eye. The human visual system processes these images yielding a depth perception
by exploitation of the geometric differences (denoted as disparities) between the two images.

In general, there are several approaches for generating 3D content that can be viewed on
stereoscopic displays. An obvious approach would be to use a stereo camera when recording
a video. In principle, the acquired stereo video (consisting of two synchronized video streams)
could be displayed directly on a suitable 3D display. In many cases, however, further processing
steps are required to adjust the stereo content to different types of displays and viewing distances.
For example, a stereo video that had been recorded for display on a 3D cinema screen would – in
its original form – yield an uncomfortable viewing experience on a small-size mobile 3D display.
The viewing freedom, encompassing the viewing distance as well as the position of the viewers,
plays an important role in determining the number of views required. Hence, a key requirement
for 3D content adaptation is the generation of novel views that simulate virtual cameras that were
not available during the original video acquisition. A particular need for novel views comes up
in the context of (multi-user) autostereoscopic displays, which rely on multiple views to enable
glass-free 3D viewing. The related adjusting procedures typically require the computation of a

9
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depth or disparity map as intermediate product. Section 2.1.1 briefly discusses the fundamentals
of the stereoscopic computation of disparity maps from stereoscopic videos.

In many applications, the disparity map is computed from two views of the same scene
using stereo vision approaches. However, if only one view is available, such as for existing
monocular videos, 2D-to-3D conversion approaches can be considered as an alternative solution.
The conversion can be performed manually by assigning disparities1 to each pixel of a video,
semi-automatically by propagating sparse user-given disparities over the entire video, or fully-
automatically by investigating monocular depth cues [119, 141]. Like in the stereo case, disparity
maps that were computed by these approaches can be adjusted to different types of displays and
utilized for novel view generation. Section 2.1.2 provides a general overview of different types of
2D-to-3D conversion approaches and their principles. In Section 2.2, special emphasis is put on
the state-of-the-art of semi-automatic 2D-to-3D conversion, which is the focus of this thesis.

Additional approaches for generating content for 3D viewing may be based on the availability
of a 3D model, from which disparities and multiple views can be rendered, e.g., with 3D computer
graphic software such as Blender [10]. Furthermore, depth can be captured directly with special
depth sensors and scanners such as Microsoft Kinect [103].

2.1.1 3D from Stereoscopic Data

Given multiple, e.g., two, images that were taken from slightly shifted viewpoints of the same
scene, a 3D model of the scene can be estimated by determining pixel correspondences between
these images (stereo correspondence problem or stereo matching problem [146]). The shift in
position of these corresponding pixels, the disparity, directly relates to the depth of a scene.
This relationship can be derived from the standard rectified stereo geometry [146]. In particular,
Figure 2.1 a) illustrates the two images within the standard rectified camera setup captured by two
cameras. The cameras CL and CR are connected by a horizontal line, which is called the baseline.
CL and CR are calibrated, i.e., the transformation (R, t) of the camera coordinate system of one
camera to the other camera is known, and rectified, i.e., the image planes of CL and CR lie in a
common plane that is parallel to the baseline. (For more details concerning camera calibration
and rectification interested readers are referred to [146].) When capturing a 3D scene using the
camera setup in Figure 2.1 a), the 3D point P is projected into the points xL and xR on the image
planes of CL and CR. During this process, CL, CR, P , xL and xR span a plane, the epipolar
plane [146]. Due to the rectified camera setup, matching points in one image plane (e.g., xL in
the left view and xR in the right view) must lie on a particular horizontal line that intersects the
epipolar plane with the image plane, i.e., the corresponding epipolar line, in the other view. This
restriction concerning the location of corresponding points provides an advantageous epipolar

1The term disparity was introduced to describe position differences in stereoscopic conditions and refers to the
field of stereo vision [101, 146]. However, semi-automatic 2D-to-3D conversion algorithms (e.g., [56, 117, 163]) use
equivalent values for their depth information. As stereo disparity, it encodes the closeness of pixels to the camera
(i.e., is large in the fore- and low in the background) and can be used to generate novel views by shifting pixel positions
accordingly. The depth information used in 2D-to-3D conversion algorithms is typically either, exactly as disparity,
given in terms of position shifts that can be used directly to generate novel views (e.g., [56, 163]) or as normalized
values ∈ [0, 1] that have to be scaled prior to that (e.g., [117]). It is not given in meters as scene depths. In the
2D-to-3D conversion literature the terms disparity and depth are used both. As in [56, 163], in this thesis we use the
term disparity when referring to depth information in the context of 2D-to-3D conversion.
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Figure 2.1: Standard rectified epipolar geometry. a) The horizontally neighboring cameras CL

and CR are rectified, i.e., the image planes lie in a common plane that is parallel to the baseline.
Matching points in one view lie on a horizontal line, i.e., the epipolar line, in the other view. CL

and CR are calibrated, i.e., the transformation (R, t) between their camera coordinate systems is
known. b) In this setup the disparity dx = xR−xL and depth Z of a 3D point P with coordinates
(X,Y, Z) and its projections in the image planes with xL and xR are related via similar triangles
(i.e., (xL, XL, CL) , (P,X,CL) , (xR, XR, CR) and (P,X,CR) ). [11, 146]

constraint, which reduces the search space for corresponding pixels in the left and the right view
to their horizontal scan-lines.

Having identified two corresponding pixels, e.g., xL and xR, which are located in the left
and the right view, the disparity dx can be determined by their horizontal position shift, i.e.,
dx = xL−xR. As shown in Figure 2.1 b), the disparity dx is inversely proportional to the depth Z
of a scene. They are related via the similar triangles (xL, XL, CL), (P,X,CL), (xR, XR, CR)
and (P,X,CR), which leads to the following equation:

Z = f
B

dx
. (2.1)

Here, f is the focal length (in pixels) and B is the baseline between CL and CR. Thus, the task of
estimating depth from a stereo image pair is reduced to the task of estimating the disparity of each
pixel (disparity map). In the context of the standard rectified stereo geometry, the process of stereo
matching can be solved by finding corresponding (matching) pixels in horizontal scan-lines of the
left and the right view. A stereo matching algorithm’s foundation to find these correspondences is
the definition of a measure that expresses the quality (or matching costs) of a potential match
between a pixel of the left and a pixel of the right view. This is typically done by measuring the
similarity, e.g., the color difference, of these pixels [134, 146]. While high similarities indicate
good matches, large matching costs point to a low matching quality. As a second step, these
costs can be aggregated. The final pixel correspondences (and thus the resulting disparity map)
are determined in terms of an optimization that is defined over the previously computed costs.
This optimization can be performed locally (e.g., [125, 126]), by selecting the disparities with the
lowest costs according to a local pixel neighborhood or globally (e.g., [12–14]), by minimizing a



12 Chapter 2. State-of-the-Art of 2D-to-3D Conversion

global cost function that seeks a disparity map that is optimal according to all pixels. Finding the
correct match for a pixel is, e.g., hindered by untextured regions or repetitive patterns (multiple
pixels in one view potentially can be matched to one pixel in the other view), illumination
differences (low pixel similarities at corresponding pixels), and occlusions (no correspondence
available). Obviously, stereoscopic 3D content generation requires stereoscopic source material,
i.e., two views. Thus, contrary to 3D content generation by 2D-to-3D conversion techniques, the
need for 3D content (and for a second view) has to be known before recording a scene.

2.1.2 3D from Monoscopic Data

Given a single view, e.g., a monoscopic video captured by a single camera, the goal of 2D-to-3D
conversion is to generate a disparity map and eventually a second view of the same scene. Thus,
compared to the problem of stereoscopic 3D content generation (Section 2.1.1), less geometric
information is given in the case of monoscopic 3D content generation. To compensate for this
missing information, manual and semi-automatic 2D-to-3D conversion techniques incorporate
user input. The (computer-aided) manual workflow of manual techniques consists of (1) roto-
scoping, i.e., partitioning of each frame into its objects/surfaces by tracing their outlines [1], and
(2) reconstruction of the scene by assigning a 3D model to each object/surface [141, 164, 175].
Concerning (1), segmentation techniques can assist 3D artists in converting 2D content. Segmen-
tation techniques group pixels into regions that are homogenous in a certain feature space (e.g.,
color) and enable the extraction of objects from image and video content (e.g., [5,88,97,122,127]).
For example, in [164] an interactive image segmentation technique [127] extends a rough user-
provided selection of an object in a frame of a 2D video. This segmentation of the marked
object can be further refined by the user and, as an initialization of a spatio-temporal object
segmentation, transferred to the next frame. Concerning (2), depth templates (e.g., planes or
spheres [164]) can be used to build and assign a 3D model to a segment (contrary to assigning
each pixel separately) or automatic 2D-to-3D conversion techniques can be employed to generate
an initial depth reconstruction that is further corrected by the 3D artist [164, 175]. Although
using techniques that assist 3D artists in the manual conversion process, it is still labor-intensive
(e.g., StereoD [143] converted 297000 frames in 60 weeks [137]). Thus, manual 2D-to-3D
conversion is typically only used for high-quality cinema productions.

Additional efforts in reducing and omitting the manual labor of 3D artists directly address
the disparity assignments to pixels. Fully-automatic 2D-to-3D conversion algorithms often
investigate monocular depth cues (i.e., depth cues that can be obtained from only one view) to
infer 3D models for a single 2D image or 2D video. In the following, we briefly discuss the
depth extraction from a few of such depth cues. For a more detailed review interested readers
are referred to corresponding literature surveys in [174] and [119]. In several fully-automatic
2D-to-3D conversion algorithms, the principle of structure from motion has been exploited
(e.g., [65,92,105,111]). In this context, the key idea is that in the special case of static scenes with
a moving camera, foreground objects typically move faster than objects that are in the background.
Thus, from one frame to the next the shift in position of foreground objects should be larger than
for background objects. Consequently, frame-to-frame pixel correspondences that are determined
by motion estimation techniques are used to convert a video into 3D (e.g., [65, 105, 111]). In
fact, this key idea is similar to stereoscopic 3D content generation (Section 2.1.1) in which
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Figure 2.2: Example user input and disparity map. a) 2D image with user input and b) a
corresponding disparity map. The hue of the disparity scribbles in a) encodes disparity c). In
the disparity map b) the disparity of each pixel, is encoded by gray intensities d), whereas bright
pixels are located in the foreground and dark pixels are in the background.

horizontal displacements between two 2D images specify a disparity map. However, in the
context of structure from motion the displacements are motion vectors that describe horizontal as
well as vertical movement in consecutive frames. For example, the automatic approach in [65]
converts a monoscopic video in real-time by interpreting the motions’ magnitudes as disparities
(and, thus, essentially treats consecutive frames as a stereo pair). However, while this simple
approximation may hold for static scenes with camera movement (epipolar conditions), it is not
necessarily sufficient for arbitrary camera movement, arbitrary object movement or a lack of
movement [174]. Additionally, fully-automatic 2D-to-3D conversion algorithms that are based
on learning (e.g., [58, 71]) or that investigate other monocular depth cues and principles have
been proposed (e.g., [2, 38, 54, 57, 70, 74, 147]). For example, when exploiting the principle of
shape from focus/defocus (e.g., [2, 54]), the amount of blur in an image is analyzed to assign
sharp (focused) image regions to larger disparities than blurred (defocused) image regions. To
distinguish fore- and background objects in images, foreground objects have to be focused [174].
Another example, are fully-automatic 2D-to-3D conversion algorithms that are based on the
principle of shape from geometric cues. Such algorithms (e.g., [38, 57]) extract geometric
scene properties, such as vanishing points (i.e., distant points in which parallel lines converge
due to linear perspective), to identify fore- and background regions accordingly. In general,
fully-automatic 2D-to-3D conversion systems depend on the availability of suitable monocular
depth cues in the scenes and their results are difficult to control. Despite the large amount of
research [119, 174] in this field, it was pointed out [73, 174] that fully automatic generation of 3D
content from 2D content is still an open challenge.

Contrary to labor-intensive manual conversion techniques or restrictive fully-automatic con-
version techniques, semi-automatic 2D-to-3D conversion techniques propagate sparse user-given
disparities to the remaining pixels of an image or video. In Section 2.2 prior works on semi-
automatic 2D-to-3D conversion, which is the focus of this thesis, are discussed.

2.2 Prior Work on Semi-automatic 2D-to-3D Conversion

Semi-automatic 2D-to-3D conversion techniques are based on sparse user input. Typically, users
mark pixels in 2D images or in keyframes of 2D videos by drawing into them. The disparity of the
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marked pixels is encoded by the color that was chosen by the user to mark the pixels (Figure 2.2).
Although such a disparity assignment is not necessarily accurate in terms of absolute disparity
values, an assignment that follows a perceptually consistent depth order is compliant with the
human visual system and sufficient for 2D-to-3D conversion [56, 73, 75]2.

The sparse user-given disparities are used to estimate the disparities of all remaining pixels
of a monoscopic image or video. To this end, semi-automatic 2D-to-3D conversion approaches
assume that the searched disparity map is piecewise smooth with disparity edges at object borders
(being indicated by color edges). The key idea of this assumption is that neighboring pixels with
similar colors might belong to the same object and, hence, are likely to have similar disparities
(e.g., in Figure 2.2, violet sky pixels should be assigned to similar disparities). Contrary, pixels
that are separated by color edges are more likely to belong to different objects and are less
constrained to have similar disparities, i.e., can also be assigned to different disparities (e.g., in
Figure 2.2, green trees should be assigned to different disparities than orange cartoon character).
Another common assumption of 2D-to-3D conversion approaches regards the spatial closeness
between two pixels, i.e., spatial close pixels are more likely to be assigned to similar disparities
than pixels that are spatially more distant. Thus, based on these assumptions initially unknown
disparities can be derived from close-by pixels with given disparities and similar color.

The main difference between different semi-automatic 2D-to-3D conversion approaches pro-
posed in the literature is the implementation of the propagation step, while the basic assumptions
essentially remain the same. For example, the propagation can be performed by means of global
optimization (e.g., [56]), by local filtering techniques (e.g., [156]) or by assignments of disparities
to segments (e.g., [165]). In the following, we give an overview of these different propagation
procedures and discuss state-of-the-art semi-automatic 2D-to-3D conversion approaches.

2.2.1 Optimization-based Techniques

Optimization-based conversion techniques express the propagation in terms of a global energy
(cost) function which is solved by minimization techniques. This function typically consists
of a data term and a smoothness term. The data term relates the user-given disparities to the
user-marked pixels. The smoothness term – the core component of the propagation process – is
responsible for the given disparities’ dense propagation to the remaining pixels. It implements the
key assumption of semi-automatic 2D-to-3D conversion by assigning lower costs to a disparity
propagation between neighboring pixels with similar colors than to a propagation between
neighboring pixels with large color differences. In this manner, the smoothness term regulates the
contribution of the user-given disparities to the final disparity assignment of each pixel. The final
disparity map, in which neighboring pixels with similar colors also have similar disparities, is
determined according to the global minimum of the cost function.

As representative examples of optimization-based techniques, the semi-automatic 2D-to-3D
conversion approaches proposed in [56, 159] and [163] exploit a global edge-aware interpolation
technique that was previously used in the context of video colorization [84]. In particular, they
propagate sparsely given disparities to each pixel i through approximating the solution of a
linear system of equations by minimizing the sum of its squared errors (i.e., using least squares

2In Chapter 3 the user input is discussed further.
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estimation [84, 146]). In the well-established 2D-to-3D conversion approach proposed in [56],
the given disparities comprise user-given disparity Di from scribbles that were drawn in the
first and the last frame of a video shot (to support disparity changes over time) and disparity
assignments predicted at anchor points Ai. These anchor points are located in between the first
and the last frame to support conversion of videos with significant motion. They are essentially
predicted by training a support vector machine [120] based on the user-given disparities and
applying it on the entire video shot. The mentioned system of equations contains per-pixel
sets of equations that each belong to one of four types, i.e., (1) spatial smoothness constraints
(e.g., Equation 2.2), (2) temporal smoothness constraints (e.g., Equation 2.3), (3) anchor point
constraints (e.g., Equation 2.4) and (4) scribble constraints (e.g., Equation 2.5), in the form of:

c1WEi(di − dj) = 0, (2.2)

c2WMi(di − dk) = 0, (2.3)

c3di = c3Ai (2.4)

c4di = c4Di. (2.5)

Here, c1, c2, c3 and c4 are constant parameters that control the contribution of the respective
sets of equations. i and j are neighbor pixels with (unknown) disparities di and dj . Sets of
equations of type (1) and (2) belong to the smoothness term, while (3) and (4) belong to the data
term of the corresponding global energy function. In particular, sets of equations of the type
(1) take on the form of Equation 2.2 and enforce the key assumption of semi-automatic 2D-to-3D
conversion. They constrain the propagation of disparity to neighboring pixels by the image
gradient WEi (i.e., image edges in the grayscale version of the image). Thus, the propagation
models smooth disparity changes in regions of similar colors (or intensities) and assumes disparity
edges at edges in an image (or frame of a video). According to sets of equations of type (2)
temporal disparity propagations among temporal neighboring pixels are constrained by the type
of observed motion (i.e., using the weight WMi in Equation 2.3). In particular, the disparities of
two temporally neighboring pixels with predominantly vertical motion are less constrained to be
similar (lower WMi) than the disparities of two temporal neighboring pixels with predominantly
horizontal motion (larger WMi). This relates to the observation that a change in depth (and,
thus, disparity) is more often observed in conjunction with vertical motion than in conjunction
with horizontal motion [56]. Sets of equations of type (3) relate predicted disparities Ai to the
locations of their anchor points. Sets of equations of type (4) relate the user-given disparities Di

in the first and the last frame to the user-marked pixels. When solving the described system of
equations using least squares estimation, the result is a smooth and plausible disparity map for
each frame of a video [56] (e.g., Figure 2.3 b)). However, this approach struggles with two main
problems, over-smoothing in its disparity maps and the scalability of the solution. Concerning
the latter, the complexity of the solution increases quadratically with the number of pixels in a
video (i.e., N ×N sized system of equations, N denoting the number of pixels in the video). To
accelerate the runtime and enable the conversion of large videos, the authors suggest to convert
a low resolution version of a video (reduced by a factor of four in each dimension [56]) and to
up-sample it with a joint bilateral filter technique [78]. The second main problem, over-smoothed
disparity maps (e.g., Figure 2.3 b), red arrows), is caused by the quadratic smoothness constraints.
These quadratic smoothness constraints apply relatively low costs to a disparity propagation
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Figure 2.3: Examples of optimization-based disparity propagation. The examples are taken from
a) [163] and b) [56] and show input images (left) and disparity maps (right). In a) the input is a
2D image with disparity scribbles. In b) the input is a 2D video, where the first and last frame
are shown. The disparity map for an intermediate frame is given. (The scribbles and the 2D
frame that correspond to this disparity map are not given by the authors.) In a) and b) disparity is
encoded by gray values (see legends). Red arrows indicate over-smoothed areas.

between dissimilar pixels (in terms of color and spatial closeness) compared to the costs of a
propagation between similar pixels. Thus, they tend to over-smooth disparity maps at color
edges in the scenes. This is especially true in combination with improper image edge definitions
in [56], that were pointed out by [117], and in the presence of fuzzy object borders (e.g., unsharp
color edges or motion blur). Furthermore, in the context of optimization-based approaches, such
as [163] and [56], insufficient propagations to pixels that are far away from the user input and
over-smoothing for very sparse user input were reported [30, 66]. Note that the above mentioned
acceleration strategy based on a reduction in video resolution can as well add over-smoothing to
the disparities maps [23, 45, 69]. Moreover, erroneous disparity predictions at anchor points can
introduce errors in the resulting disparity maps [117].

In the same line of work as [56,84], Wang et al. [163] solve a similar system of equations with
the same interpolation technique as in [56], but applied iteratively from a coarse-to-fine resolution
of a given image or video. Contrary to [56], the disparity maps are estimated indirectly by
expressing the energy function in terms of image warps, i.e., mapping operations according to pixel
disparities that generate a novel view. This means, the cost function is solved for a new left and a
new right view, which implicitly generates a disparity map as additional output. In this manner,
multiple steps in the 2D-to-3D conversion process, i.e., disparity map generation, its adjustment
to a comfortable disparity range and novel view generation, are addressed simultaneously. The
data term of their cost function enforces image warps to be consistent with disparity maps and
relates all pixels to the user-given disparities. The data term constrains all pixels without given
disparities by spatial (and temporal) distance to the pixels with user-given disparities in the
original image or video. Similar to [56], the (spatio-temporal) smoothness constraint in [163] is
based on color image edges, but additionally weighted by visual saliency [49] to further reduce
disparity over-smoothing in salient image regions. Visual salience is a measure for the human
attention towards specific image regions (e.g., distinctive foreground objects on uniformly colored
background) and, thus, (automatically) specifies regions of special interest. The main motivation
for its incorporation in the 2D-to-3D conversion process is that especially in these regions, artifacts
in novel views are noticeable and should be avoided. To accelerate the conversion and increase
the scalability of the approach, their linear system of equations is solved with a multi-scale GPU
implementation (e.g., [163]’s GPU implementation requires approximately one minute per four
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frames with HD resolution). However, as in [56] the quadratic smoothness constraints may still
cause some over-smoothing of disparity edges at object borders.

Rzeszutek et al. [130] employ a simpler approach to semi-automatically convert 2D videos
to 3D. It is based on their 2D-to-3D image conversion approach in [118]. The authors track
user-given disparity scribbles from the first frame to the next frames. Subsequently they solve a
system of equations that constrains the disparity propagation only by color differences of spatio-
temporally neighboring pixels. Compared to the previously discussed conversion approaches, the
solution is obtained by an equivalent global optimization procedure [118], i.e., random walks [51].
In the same year (2011) as our first publication in the field of semi-automatic 2D-to-3D conversion
(i.e., Chapter 4), Rzeszutek et al.’s approach was improved by exploiting segmentation algorithms.
Although Rzeszutek et al.’s algorithm is quite different compared to ours, it takes on a similar
view. Specifically, to reduce the mentioned over-smoothing effect at object borders, which is also
present in the equivalent solution, the authors incorporated an interactive object segmentation
algorithm in the optimization process in [41, 116–118, 169]. In these approaches, as a first step
each user-given disparity scribble is used to interactively segment an object from an image and
assign it with corresponding scribble disparities as an initialization. These initial disparities are,
subsequently, used to additionally constrain the disparity propagation between neighboring pixels.
In the system of equations to be solved, the disparity propagation from the user input to the
remaining pixels is not only constrained by color similarities of neighboring pixels in the 2D
image, but also by the disparity similarities of neighboring pixels in the initial disparity map.
In [41] the disparity difference is additionally weighted by color edge information to further
reduce the over-smoothing effect.

Following the same idea as [118], in [66] a different segmentation process, i.e., [4], and a
different optimization technique, are used to construct 3D models for 2D images from scribbles
that indicate a depth order. This approach additionally computes transparencies close to borders
of foreground objects, which can be used when generating 3D models or novel views.

In [116] the original 2D-to-3D image conversion approach [118] is extended to convert videos
by employing an improved tracking method compared to [130]. The additional usage of bounding
boxes in the tracking process allows the assigned disparities to automatically change with the
size of those bounding boxes. The underlying idea is that objects become larger when they move
closer to the camera and that the bounding boxes of the scribbles behave similarly. To reduce
the runtimes and the memory footprint of the conversion, long videos are split into overlapping
sub-videos that are processed independently.

Another 2D-to-3D conversion approach that should be mentioned is [92]. In [92], user-given
disparity information is enriched with additional information, including disparity estimates from
motion analysis. Similarly to the approaches discussed above, the authors solve a quadratic
optimization problem to obtain a disparity map. Contrary to these approaches, the approach
in [92] supports inequality constraints (e.g., one object is in front of another object) that are
provided by the user. Thus, it addresses temporal disparity changes and perceptual coherence.

2.2.2 Filter-based Techniques

Filter-based conversion techniques (e.g., [28, 90, 94, 156]) typically assume that the disparities
of an entire keyframe are given. The key idea of these methods is to locally propagate the
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Figure 2.4: Illustration of filter-based disparity propagation. a) Several (linear) filtering tech-
niques update the center pixel (green) by weighted average that is computed within filter window
(blue). The weight computation is performed in the same image as the computation of the
average. b) Joint (or cross) filtering techniques: The filter weights and the weighted average are
computed in different images (e.g., color image and disparity map, respectively). c) Filter-based
propagation: The center pixel is located in one frame (e.g., frame 2) while the remaining pixels
of the filter window are located in another frame (e.g., frame 1). The center pixel in frame 2 is
updated with the weighted average computed from the remaining window pixels in frame 1.

given disparities from one frame to the next frame with unknown disparities by using joint
(or cross) filtering techniques, which are briefly explained in the following. Several image
filtering techniques (e.g., the bilateral filter [153]) place a window of fixed size at each pixel in
an image and update this pixel by a weighted average according to its neighboring pixels within
the window (Figure 2.4 a)). Joint filtering techniques (e.g., the joint bilateral filter [115] or [59])
decouple the weight computation from the average computation. To this end, the filter window
is placed at the same pixel position in two corresponding images, e.g., a disparity map and a
color image (Figure 2.4 b)). The averaging is then performed in one image, e.g., the disparity
map, while the weights for the averaging operation are determined in another corresponding
image, e.g., the color image. The weights regulate the influence of pixels in the window on
the computed average. They can be computed based on color similarities of each pixel in the
window to the center pixel. Thus, when using a joint filtering technique, predominantly disparities
of pixels with similar colors are averaged, while disparities of pixels with differing colors are
largely suppressed. Due to this behavior, joint averaging operations locally implement the key
assumption of semi-automatic 2D-to-3D conversion and can be used to average known disparities
within a window according to color similarities to center pixels with unknown disparities. As
mentioned above, in the context of filter-based 2D-to-3D conversion, disparities are typically
given for one frame and are propagated to a following frame. Thus, to perform a filter-based
propagation the center pixel of a filter window is located in a frame without user given disparities,
while the remaining pixels of the filter window are located in a frame with given disparities
(Figure 2.4 c)). The disparity of the center pixel is assigned according the computed average.
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The main advantage of filter-based conversion techniques is the low complexity of their
approach. Since they propagate disparities locally, they can potentially exhibit short runtimes and
low memory footprints. This is especially true in comparison with conversion techniques that are
based on global optimization techniques (Section 2.2.1), which face large (global) and complex
optimization problems. However, the efficiency of these filter-based conversion techniques
comes at some cost. More precisely, these conversion techniques struggle with three main
problems [156]: (1) Color ambiguities, (2) new colors, and (3) temporal error accumulation. First,
local color similarities at different disparities within a window cause the disparities of similar
objects to be averaged together (e.g., at unsharp color edges). Second, if the color of the center
pixel is not present in its remaining window, the new averaged disparity will be dominated by
the pixels which are most similar to this new color and might belong to a different object. This
problem, for example, arises if a new object enters the scene or if the window size is too small to
capture the motion of a scene. Thus, in this context, windows with large sizes are beneficial. Note,
however, that with increasing the size of a window, the probability of local color ambiguities,
i.e., (1), increases. Depending on the used filtering technique, larger windows as well increase
the runtime of the propagation process [59]. Third, filter-based conversion techniques typically
perform the conversion in a frame-to-frame manner, using the propagation result from a frame as
given disparities to convert the subsequent frame. Thus, erroneous disparities, e.g., due (1) or (2),
are further accumulated to subsequent frames. This leads to decreases in quality of the disparity
map with the distance from the user-marked keyframe [156]. These problems usually result in
over-smoothed object borders in the generated disparity maps.

The authors of the popular filter-based 2D-to-3D conversion algorithm [156] adopt a joint
bilateral filter [115] to perform the propagation that was described above and obtain an initial
disparity map. They attempt to correct errors in this initial disparity map that are caused by
(1) and (2) by block-based motion compensation. To this end, estimated, initial disparities
are overwritten by given disparities from the previous frame that are connected by motion
vectors. The used motion vectors are estimated between the given disparity map and the initial
disparity map. Likewise, in [31] motion vectors are estimated between a smoothed version of
the given disparity map and the initial disparity map. However, estimating motion vectors from
disparity maps is not beneficial, since they do not capture image texture, which is crucial for
motion estimation methods [7]. Although the performed motion compensation suppresses the
mentioned over-smoothing effect, inaccurate motion estimation can introduce visible artifacts
(e.g., blocking artifacts [28]) due to erroneously overwritten disparities. Furthermore, since
color ambiguities (i.e., untextured regions) and new colors also affect motion estimation [7],
the mentioned problems largely remain. The additionally required motion estimation adds
computational complexity to the initial low complex filter-based 2D-to-3D conversion approach.
Several authors (e.g., [28,64,93,94]) as well attempt to improve the propagation result by refining
initial results or modifying the basic algorithm of [156]. For example, Cao et al. [28] present an
improved filtering strategy, in which the filter window is shifted according to motion vectors that
are estimated from color frames. To reduce the accumulation of erroneous disparities, i.e., (3), and
enable disparity changes over time, a bi-directional propagation strategy is applied to determine
the initial disparity map. In particular, frames without user-given disparities are directly based on
the user-given disparities of the two nearest frames, instead on the estimated disparities of their
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previous frames as in [156]. This means, the propagation is performed separately with respect to
a former and with respect to a later frame with user-given disparities. The final disparity map is a
weighted (distance to frames with user input) average of both disparity maps. Cao et al. [28] report
runtimes of 18 seconds per frame with a resolution of 720×576 pixels for a CPU implementation.
Lie at al. [93]’s improvement over the basic approach is to post-filter the motion compensated
disparity maps with a joint filtering technique that is based on both color and disparity differences.
This strategy can smooth out errors that were caused by inaccurate motion compensation, but
results in over-smoothed object borders that are further accumulated over time and eventually
lead to over-smoothed disparity maps [31]. In some similarity, in [64] the refinement step of an
initial disparity map is performed in the context of a global optimization scheme. In [94], a fixed
threshold for color differences along motion vectors is additionally used to identify potentially
erroneous motion vectors that caused erroneously propagated disparities in [93]. The identified
disparities are corrected according to disparities of spatially neighboring pixels, disparities that
were propagated from only one annotated frame or by repeating the propagation process with
different parameters.

Contrary to the previously discussed approaches, in [90, 173] user-given disparities from
annotated frames are directly copied to frames in which the disparities are unknown by following
motion vectors between them. The filtering technique from [156] is only applied in regions
where no disparities could be copied to (e.g., due to occlusion or disocclusion). Likewise, motion
compensation is only applied in regions without disparities, to suppress artifacts such as over-
smoothed disparity edges. The bi-directional propagation strategy from [28] determines the final
disparities and captures linear disparity changes over time. Similarly to [90], in [173] the copied
disparities in each frame are refined, but unlike [90] within a global optimization procedure that
aims to assign similar disparities to similar (color) neighbor pixels. While the former approach,
i.e., [90], and some of the approaches discussed above, support disparity changes over time, the
perceptual coherence of disparity changes is not addressed.

In [82, 129] an alternative approach is employed to convert 2D content to 3D, namely the
approximation of global optimization with local filtering operations. Here, sparsely provided
disparities in videos are propagated by iteratively applying an edge-aware filtering operation [46]
spatially and temporally. The used filter exhibits interactive runtimes (i.e., a one megapixel image
is filtered within milliseconds using a GPU implementation [46]). To improve the temporal
coherence of the results, temporal filtering is performed by following predetermined motion
vectors from frame to frame. While the original work in [82] only mentions that their optimization
scheme can be applied for 2D-to-3D conversion of images and videos, the authors of [129] adopt
the idea for this application and focus on images. They propagate sparse, automatically estimated
disparities given for a 2D image to obtain dense disparity maps. In this context, the authors
of [129] point out that filter-based conversion techniques are inferior to optimization-based
conversion techniques. Typically, they are sensitive to their parameters, which have to be
carefully adjusted dependent on the 2D content and density of the given disparities. It is possible
that disparities of some image areas remain unknown due to numerical issues. In particular, larger
filter windows typically tend to over-smooth the results, whereas small filter windows increase the
number of pixels with unknown disparities. To alleviate this behavior for smaller filter windows,
an iterative refinement procedure fills in such areas after each filter iteration in [129].
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Figure 2.5: Illustration of segmentation-based disparity propagation. This type of propagation
typically comprises two steps: a) Interactive object segmentation according to user input (e.g.,
colored scribbles, left), segments (right) are color-coded with the same color as the scribbles (but
semi-transparent). b) Assignment of disparities (bright: front, dark: back) to these segments.

2.2.3 Segmentation-based Techniques

Closely related to manual 2D-to-3D conversion approaches, segmentation-based techniques
(e.g., [29, 44, 91, 165]) typically comprise two main steps: (1) segmentation of the 2D content
into regions that have similar colors (Figure 2.5 a)), and (2) assignment of disparities to these
segments (Figure 2.5 b)). For example, the algorithms in [91, 165] follow these two basic steps.
First, users interactively extract foreground objects from keyframes by using a scribble-based
image cutout tool [89] and in each keyframe assign a single disparity to each extracted foreground
object. Additionally, each pixel of the remaining stationary background is assigned to a disparity.
Subsequently, the extracted foreground objects are tracked, which results in spatio-temoral
segments that extend across frames. Second, the disparity of each segment is given by its
disparity assignment in keyframes. To enable temporal disparity changes within segments, a
segment’s disparity can be determined by interpolating its disparity assignments performed in
the two nearest keyframes [165]. The main advantage of these approaches is that the performed
segmentation can provide clear borders between segments that can be assigned to different
disparities without smoothing disparities across these borders. However, the above discussed
approaches do not support disparity variations within segments. This leads to unnaturally flat 3D
scenes (i.e., cardboard effect). Concerning the required user interaction, the authors of [165] note
that users have to approximately annotate every tenth frame to track foreground objects through
the video. Thus, this and similar approaches (e.g., [29]) can be laborious. This is especially true
for complex scenes (many objects), much object motion and motion-caused occlusions.

In [44] an alternative approach is employed to propagate user-given disparities that are
provided for an entire keyframe to the remaining pixels of a video. Each frame is automatically
segmented into small segments (over-segmentation). Next, each segment in frames without given
disparities is matched to a segment in the keyframe by searching the segment with the smallest
color difference and spatial distance. Finally, the known disparities are assigned to segments
without disparities. Depending on the segment sizes, in this approach objects are not restricted to
a single disparity. While smaller segment sizes allow more disparity variation within objects, the
resulting increased number of segments also increases the complexity of the matching step. It is
worth noting that small, similar segments might introduce color ambiguities which lead to wrong
matches and erroneous propagations.
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Finally, interactive segmentation was also used to further guide optimization-based 2D-
to-3D conversion techniques (e.g., [117, 169]). As discussed in Section 2.2.1, this usage of
segmentation reduces over-smoothing of object borders in disparity maps.

2.3 Summary

In this chapter, we have discussed prior work on 3D content generation with a focus on 2D-to-3D
conversion techniques. First, we have explained the basic idea behind stereoscopic 3D content,
i.e., the need of two shifted views and their geometric differences (disparities) to trigger the depth
perception. Then, we have outlined different approaches to obtain these views and their disparities,
including approaches that are based on stereoscopic data and approaches that are based on
monoscopic data. The major part of this chapter has focused on 2D-to-3D conversion approaches
that require different degrees of user interaction, i.e., manual, fully-automatic and semi-automatic
conversion approaches. Since the algorithms proposed in this thesis belong to the latter category,
our survey focused on the state-of-the-art in the latter category. We have discussed semi-automatic
2D-to-3D conversion approaches that view the propagation process as an optimization problem
that aims for a globally optimal interpolation of the given disparities across the entire 2D video.
These approaches typically face complex global (quadratic) optimization problems that lead
to long runtimes, scalability issues and often over-smooth object borders in disparity maps.
Then, simpler conversion approaches that are based on local filtering techniques were discussed.
While exhibiting a lower complexity than global optimization-based techniques, filter-based
techniques struggle with problems such as over-smoothing of disparity edges, error accumulation
and enabling disparity changes over time for objects that move in depth. Due to their restricted
(i.e., local) support from neighboring pixels, problems such as color ambiguities in the given 2D
content are more pronounced than in optimization-based techniques. Our review continued with
segmentation-based conversion techniques that interpret segment borders as hard object borders
where smooth disparity variations should be avoided. This facilitates the distinction between
different objects on the scene and leads to hard, not over-smoothed disparity edges near segment
borders. However, these techniques often restrict the segments or objects in a scene to a single
disparity, which results in unnaturally flat 3D scenes.

As the discussed optimization- and segmentation-based conversion techniques, the 2D-to-3D
conversion algorithms presented in the following chapters are based on sparse user-input in
form of scribbles, as opposed to denser input given for an entire keyframe which is common
for filter-based techniques. Since our proposed algorithms exploit segmentation information in
the conversion’s disparity propagation, they can be regarded as segmentation-based 2D-to-3D
conversion techniques. Related to optimization-based techniques, they further strive for smooth
disparity variations within segments. In some similarity to filter-based techniques, our algorithms
use efficient filtering techniques for disparity interpolation/aggregation and refinement.



CHAPTER 3
Fundamentals and Related Work of

2D-to-3D Conversion

3.1 User Interaction

As discussed in the previous chapters, 2D-to-3D conversion approaches attempt to recover scene
geometry, i.e., disparity, that was lost during capturing a scene with a single camera. To make
this highly ill-posed problem more feasible, semi-automatic 2D-to-3D conversion approaches
incorporate user input to constrain the given infinite solution space. The most common form of
user interaction used in previous work on semi-automatic 2D-to-3D conversion (e.g., [56, 82, 92,
117, 163, 165]) and an often used form of user interaction in other user-centric image and video
editing tasks such as interactive object segmentation (e.g., [4, 5, 19, 87, 89, 97, 107, 125, 168]),
alpha matting (e.g., [85, 87]), colorization (e.g., [82, 84, 87]) or tone mapping (e.g., [87, 95]) are
scribbles. With scribble-based annotations, users directly draw strokes (scribbles) in images or
keyframes to initialize a few pixels (Figure 3.1 b)). The color of these scribbles, which can also
be chosen by the user, typically indicates different labels. Depending on the task, a single scribble
is often restricted to a single color and label (e.g., in the case of object segmentation, one color
for the object of interest). As discussed in Section 2.2.3, various segmentation-based 2D-to-3D
conversion techniques (e.g., [91,165]) perform segment-wise disparity assignments. In these cases,
user-scribbles are used to (successively) segment objects from the scene and are, thus, restricted
to a single label in each iteration (e.g., object of interest). Contrary, in various optimization-based
2D-to-3D conversion techniques (Section 2.2.1), the color of these scribbles directly encodes the
relative closeness of the marked pixels to the camera (Figure 3.2) and might also contain color
falloffs, i.e., multiple labels (disparities), to indicate slanted surfaces (Figure 3.2 c)). Thus, the
drawn scribbles intuitively initialize user-marked pixels and their appearance (i.e., pixel color as
opposed to scribble color) with chosen disparities. Independent of the performed task, previous
work either employs progressive scribble-based annotations, i.e., provide intermediate (or locally
updated) results as instant feedback while drawing a scribble (e.g., [97, 163]), or process the
annotated image or video after all scribbles have been placed (e.g., [56, 84]). Note that in both
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Figure 3.1: User interaction examples. a) Input image without user annotations. b) Input image
annotated with scribbles. c) Input image with boundary-based image annotations. Scribble colors
encode labels, e.g., closeness to camera, segment labels or colors to recolor the image.

Figure 3.2: Disparity scribble examples. Input image and scribble-based annotations: a) color-
coded disparity scribbles (from fore- to background: rose, red, blue, green). Example taken
from [56]. b)-d) disparity scribbles encoded by gray values (bright fore-, dark background).
Note that c) also contains a scribble with an intensity falloff which indicates a smooth change in
disparity. Examples in b) and c) are taken from [163]. Example in d) is taken from [118].

cases, users have the option to change their annotations. While in the first case the result is
obtained in a step-by-step manner, e.g., by updating the previous result (potentially considering
only a subproblem), in the second case the processing step is repeated from scratch (and for the
entire image or video). Generally, the main reason to employ a scribble-based user interface is its
simplicity and its small amount of required user interaction.

An alternative form of user interaction, that is mainly used in the context of (computer-
aided) manual 2D-to-3D conversion (e.g., rotoscoping [1, 72, 104]), are boundary-based image
annotations. With boundary-based image annotations, users essentially redraw the boundaries
of objects in images or video frames (Figure 3.1 c)), which subsequently are optimized to
(ideally) cling to the object boundaries. The main disadvantage arises at objects with complicated
boundaries (e.g., fur) and at fine details which can be hard to trace.

Concerning the choice of specific disparities for a scribble, the question of feasibility and
correctness of the disparities may arise. In this context, cognitive studies on depth perception from
2D images suggest that establishing a depth order, i.e., assessing one point as closer or farther from
the camera than another point, can be considered a mostly simple task [75, 155]. In these studies
user-performed 3D reconstructions were very similar to each other, when factoring out scaling of
the depth range. This indicates that in our task of semi-automatic 2D-to-3D conversion, the correct



3.2. Spatio-temporal Video Analysis 25

depth order of objects and their relative closeness to the camera are perceptually more important
than the accuracy of the chosen disparities. A more recent user study with focus on 3D content
generation [73] further indicates that an adjusted (i.e., scaled or smoothly remapped [81]) disparity
range can result in equally plausible depth impressions. Thus, a disparity assignment that follows
a perceptually consistent depth order is compliant with the human visual system and sufficient for
semi-automatic 2D-to-3D conversion. On a related note, generated disparity maps are in many
cases further adjusted to different types of displays or viewing distances, which can also involve
scaling or compressing their disparity range prior to viewing [141]. We suspect that the usually
performed adjustment of the disparity maps is also a reason why some semi-automatic 2D-to-3D
conversion algorithms (e.g. [130]) work with normalized disparities. In these normalized disparity
maps (often referred to as depth maps), zero corresponds to the point farthest away from and one
to the point closest to the camera. In any case, the depth order given by (normalized) disparities
can be scaled to a suitable disparity range after 2D-to-3D conversion. It is worth mentioning that
the density of the annotations affects the quality and level of detail of 2D-to-3D conversion results.
Dense annotations that cover disparity details within objects result in more detailed conversion
results than sparser annotations that only capture the main objects. In this context user studies [73]
indicate that the latter is sufficient with exception for large or salient objects.

3.2 Spatio-temporal Video Analysis

In the previous chapters, it has been indicated that spatio-temporal video analysis plays a vital
role in the field of 2D-to-3D conversion. To propagate sparsely given disparities, a relation
between pixels with given disparities and pixels without given disparities has to be established.
For example, grouping techniques, i.e., segmentation algorithms, have been used to establish
spatial (and temporal) connections between neighboring pixels (e.g., Section 2.2.1). Additionally,
spatio-temporal disparity propagation in videos often relies on motion estimation (e.g., some
approaches in Section 2.2.2) or tracking (e.g., some approaches in Section 2.2.3) to establish
a temporal connection between pixels or pre-segmented objects across frames. The topics
mentioned above within the field of spatio-temporal video analysis are discussed in the following.
Section 3.2.1 focuses on graph-based representations, which connect neighboring image or video
pixels. Section 3.2.2 and Section 3.2.3 review two different approaches to establish spatial and
temporal relations between neighboring pixels, i.e., segmentation and edge-aware interpolation
algorithms. Additional topics, such as automatic shot boundary detection (e.g., [16, 33]) to
pre-segment videos into sub-videos that are more suitable for conversion or spatio-temporal video
filtering for filter-based 2D-to-3D conversion techniques (e.g., Section 2.2.2) or for disparity map
post-processing (e.g., [69, 78]) are as well related to the field of 2D-to-3D conversion.

3.2.1 Graph-based Representation

In context of 2D-to-3D conversion and segmentation, graph-based representations of image or
video content have shown to be useful (e.g., [43, 51, 53, 117, 123, 139, 146]). In a graph-based
representation, a given image or video is considered as a weighted adjacency graph G = (V,E),
where V is a set of vertices (or nodes) and E is a set of undirected edges. In this graph, pixels i
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Figure 3.3: Graph-based representation. The image (left) is represented as an 8-connected
adjacency graph G = (V,E) (right). Graph for the marked pixels (illustrated as squares) in
the image: Pixels i are nodes vi ∈ V . Neighboring nodes, e.g., vi and vj , are connected by
edges eij ∈ E. Edge weights, e.g., wij , express the similarity of the nodes connected by them.

correspond to nodes vi ∈ V and two neighboring pixels i and j are connected by edges eij ∈ E.
Edges are typically assigned weights (affinities)wij that express the similarity (or costs, e.g., color
difference) of the two pixels that are connected by an edge. Figure 3.3 shows an example of
such a graph. In this example, each pixel of the image is connected to its eight direct neighbor
pixels (8-connected neighborhood). Alternatively, in a 4-connected neighborhood, nodes are only
connected to their horizontal and vertical neighbors (without the diagonal edges), which has a
smaller memory footprint. In case of a video, pixels can be additionally connected across frames,
e.g., with their direct temporal neighbors (same pixel position, but different frame) or with their
temporal neighbors according to previously estimated motion vectors. In terms of connectivity in
a neighborhood, for example, a spatially 4-connected neighborhood plus the temporal connections
would result in a 6-connected neighborhood for a video.

Related to the weighted adjacency graph described above, a weighted adjacency matrix (or
affinity matrix) A, which corresponds to such a graph, captures the pairwise edge weights wij . In
particular, the symmetrical N ×N matrix A = (aij), with N being the number of pixels (nodes),
stores each edge weight wij at aij (and aij).

In the application of 2D-to-3D conversion or interactive object segmentation some nodes
might contain additional information that was given by the user, e.g., a disparity if the pixel
was marked by a disparity scribble or a segment label (i.e., fore- or background), respectively.
Given a graph-based representation of an image or a video, 2D-to-3D conversion’s disparity
propagations, edge-aware data interpolation in general and segmentation techniques take the
similarities between neighboring pixels, i.e., the edge weights, into account. Disparity propagation
algorithms (smoothly) propagate the given data, i.e., disparities, preferably along edges that
indicate large similarities (as characterized by small edge weights). Segmentation algorithms
separate groups of pixels with large similarities (i.e., segments) from each other. In a segmentation
result different groups of pixels are connected by edges with relatively small similarities (i.e., large
edge weights).
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3.2.2 Segmentation

In the previous chapters, it has been indicated that semi-automatic 2D-to-3D conversion poses a
similar problem as segmentation. While segmentation strives for a partitioning of an image’s or
video’s pixels into homogenous groups (that are, e.g., similar in color), 2D-to-3D conversion’s
disparity propagation aims for an assignment of similar disparities to similar pixels. In case
of interactive techniques, another similarity arises, namely the user-centric component of both
applications. Thus, this section gives a brief overview of popular segmentation approaches
and discusses their similarities and differences to semi-automatic 2D-to-3D conversion. In
this context, it is important to note that although segmentation and semi-automatic 2D-to-3D
conversion are two closely related problems, there are differences between them. While a “hard
segmentation“ distinctly separates segments by their unique segment labels (i.e., all pixels within
a segment obtain the same label, different segments have different labels), this is not necessarily
the case in the application of 2D-to-3D video conversion. Semi-automatic 2D-to-3D conversion
often (e.g., in [56, 117, 163]) allows interpolations between user-given labels (i.e., disparities) in
order to obtain more realistic 2D-to-3D conversion results.

3.2.2.1 Spatial Connectivity

In computer vision, segmentation is intensively studied and a fundamental problem [5, 43, 53, 88,
89,97,122,127,146]. Segmentation is used with various applications such as tooning (e.g, [162]),
object extraction (e.g., [5]), alpha matting (e.g., [4]), stereo matching (e.g., [14]), automatic
2D-to-3D conversion (e.g., [54]) and semi-automatic 2D-to-3D conversion (e.g., Section 2.2.3).
As a backbone for higher-level vision tasks, there is an even wider spectrum of applications
for segmentation, including recognition of human motion (e.g., [121]). One way of classifying
segmentation algorithms is to consider the required user interaction. On the one hand, automatic
segmentation approaches (e.g., [26, 32, 43, 53, 86, 114, 139]) automatically partition images into
multiple groups of similar pixels. While the grouping criterion (e.g., color) might be defined,
the number or properties (e.g., the specific colors) of labels are not known a priori. On the other
hand, interactive (or semi-automatic) segmentation approaches (e.g., [5, 72, 79, 97, 104, 122, 125])
assign each pixel to a label from a pre-defined set of labels (e.g., object of interest and rest). The
number of labels and their properties (e.g., the object of interest is green and the rest is yellow)
are given by the user (i.e., in form of a few user-initialized, pre-labeled pixels).

Among the automatic segmentation approaches Felzenszwalb and Huttenlocher’s region
merging approach [43], normalized cuts [139] and the mean shift algorithm [32] can be considered
popular approaches [146]. As a starting point, let us consider a graph-based representation
G = (V,E) (Section 3.2.1, Figure 3.3) of a given image. A simple segmentation approach
can in principle apply a fixed rule, e.g., a constant threshold that is applied on the graph’s edge
weights wij , to merge nodes vi into connected groups of nodes. These groups of nodes (and
edges between them) are referred to as segments (or regions). While this approach is fast and
simple, it is usually not sufficient, since it fails to model (color) variations within segments (e.g.,
due to lighting). While a chosen threshold might be optimal for a low contrast edge between
two objects, the same threshold might in other image regions split an object into many small
segments (over-segmentation) due to its smooth change in color. Felzenszwalb and Huttenlocher’s
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Figure 3.4: Illustration of automatic segmentation algorithms. a) Region merging [43]: Similar
nodes (pixels) are merged (red edges) to larger segments. b) Normalized cut: [139]: The graph is
iteratively split (red cut) in two groups of dissimilar nodes. c) Mean shift [32] identifies peaks in
an image’s color distribution (here: Red, Green, Blue) by iteratively averaging it within a local
neighborhood (red rectangles) and groups pixels accordingly.

region merging approach [43] addresses this problem by introducing adaptive thresholds (denoted
as internal variations or differences [43]) that are set relative to the (color) variation within a
segment. In particular, in the beginning each node vi ∈ V is considered as a segment of its own.
Subsequently, edges eij ∈ E are traversed in decreasing order of their weights wij . To merge
two connected nodes vi and vj and their associated segments, the weight wij of eij has to be
smaller than the largest edge weight within their respective segments. Obviously, in the beginning
a segment does not contain an edge. Hence, in this case, no maximum edge weight exists. Thus,
in [43] the adaptive thresholds further depend on segment sizes. An important property of this
algorithm is its runtime of O(N log N ) with N being the number of pixels in an image, which
makes it a fast automatic segmentation algorithm [53,114]. This algorithm was adopted, e.g., in a
hierarchical application [53] or with different features than color [86].

Contrary to forming segments through merging nodes in G (Figure 3.4 a)), normalized
cuts [139] directly separate groups of nodes by cutting connections, i.e., removing edges, with
high costs (e.g., large color differences) (Figure 3.4 b)). Essentially, G is recursively divided
into two groups, in such a way that a normalized sum of the edge weights wij that connect
nodes of the two groups is minimized. This minimization problem is defined over G’s affinity
matrix A (Section 3.2.1) and can be approximately solved by turning it into a generalized
eigenvalue problem [50, 139]. This basic algorithm was extended and accelerated by several
authors (e.g., [34,138,142,151]). For example, Sharon et al. [138] introduce a multi-scale version
of the algorithm to reduce the exponential computational costs of the original algorithm to linear
computational costs (in terms of the number of pixels in an image).

Besides segmentation approaches based on merging or splitting, mode finding algorithms,
such as the mean shift algorithm [32], have been proposed. These algorithms identify peaks (modes)
in an image’s color distribution (Figure 3.4 c)) by iteratively averaging it within local neighbor-
hoods (multiple restart gradient descent [146]). Although they are computationally expensive,
they have been modified and applied to several computer vision problem [114, 146, 161].

In the group of interactive segmentation approaches, graph cut algorithms (e.g., [18,19,127])
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Figure 3.5: Illustration of interactive segmentation algorithms. a) Graph cuts [19]: Find the
optimal cut (red line) that separates F and B. b) Geodesic segmentation [4]: For each node find
the lowest cost path (red) to one of the marked pixels (F or B). c) Intelligent scissors [104]:
Correct a user-drawn curve (gray) with a new curve (red) that follows the lowest cost path. This
path starts from the user-given starting point S of the curve and ends at its current end point.
(Contrary to b), in c) edges have low weights if they are likely to lie on an object boundary.)

and active contours (e.g., [72,104]) are popular approaches to perform a binary segmentation [146].
Concerning the former approaches, Boykov and Jolly [19] extend the graph-based presentation
discussed in Section 3.2.1 by two additional seed nodes that correspond to the user-marked
foreground pixels F and the user-marked background pixels B, respectively (Figure 3.5 a)). The
two additional nodes also come with additional edges to each of the other nodes. The weights
of these additional edges express the similarity of the given nodes to the user-marked nodes,
i.e., F and B. In [19], Boykov and Jolly show that the binary segmentation problem, i.e., here,
finding the globally optimal cut to separate F and B, can be efficiently and exactly solved by
formulating it as a maximum flow/minimum cut graph optimization problem [52]. The basic graph
cut algorithm [19] was extended and applied by many authors to different problems in computer
vision (e.g., [5, 18, 89, 97, 118, 122, 127, 157]). For example, GrabCut [127] is an iterative version
of the basic algorithm with an improved user interface for binary segmentation (i.e., bounding
box to roughly mark the object of interest) and an additional step to estimate transparencies
at object borders (alpha matting). Alternative to graph cut algorithms other techniques can be
used to separate F and B, e.g., [4, 18, 125]. For example, in [4] the binary segmentation is
efficiently (O(N ), N number of pixels in an image) computed based on the geodesic distance of
each node to fore- and background scribbles (F and B) (Figure 3.5 b)). Contrary, in [79, 125]
the label-based optimization is approximated using a filtering technique. Due to embedding the
local pixel similarities in a local filter-based context instead of a global formulation, a binary
segmentation can be performed at interactive rates [125].

Finally, the concept of active contours (e.g., [72,104]) should also be briefly discussed. Given
a rough initialization by the user (e.g., boundary-based annotation of an object), a given curve is
optimized to cling to strong gradients (edges) in an image. For example, intelligent scissors [104]
update the curve in real-time while a user is drawing it. This is essentially done by continuously
searching the lowest cost path in G between the starting point S of the user-drawn curve and the
current end position of the user-drawn curve (Figure 3.5 c)). Note that in this case, edge weights
have lower costs if they are likely to coincide with an object boundary. To prevent the entire
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curve from flickering, intermediate curves are regularly saved and new starting points (i.e., the
end point of the saved curve) are assigned. As mentioned above, active contours are, among other
applications, also used for rotoscoping (e.g., [1]) and, thus, for manual 2D-to-3D conversion
approaches. They are also used in the context of semi-automatic segmentation-based 2D-to-3D
conversion approaches (e.g., [165]).

3.2.2.2 Temporal Connectivity

When segmenting videos or propagating sparsely given data within videos, not only a spatial but
also a temporal connection between pixels has to be established. Applying an image segmentation
algorithm individually to each frame of a video results in segments which do not extend over time.
Furthermore, establishing a temporal correspondence of spatial segments between adjacent frames
poses the problem of temporal coherence, with unstable segmentation results causing flickering of
region boundaries. To this end, video segmentation approaches often take one of the following two
fundamental strategies: They either (1) consider the whole video volume or (2) process the video
in a frame-to-frame manner. In both cases, motion information can be incorporated to address the
problem of temporal coherence. As briefly mentioned in Section 3.2.1, temporally neighboring
pixels can be connected across frames to, for example, their direct temporal neighbors (same
pixel position, different frame) or according to previously estimated motion information. The
most common form of dense motion information used in the context of video segmentation are
optical flow vectors (OF) (e.g., [6, 7, 61, 99, 110, 125]). Assuming that between a pair of adjacent
frames pixel colors are approximately constant and only their position changes from frame to
frame, the optical flow vector for each pixel is estimated according to the change in patterns from
one frame to the next (Figure 3.6 a)). While not discussed further in this thesis, detailed reviews
on optical flow estimation techniques and their challenges can be found in [6], [7] and [146].
Another common approach to estimate motion, that shall be briefly mentioned in this thesis, is
tracking (e.g., [98, 152, 171]). Contrary to optical flow, motion information provided by tracking
approaches is usually sparse, i.e., only determined for a few points or segments (Figure 3.6 b)).
These sparse points can be locally tracked by iteratively computing their new position in the
next frame (e.g., [152]) or matched by individually comparing each point (i.e., its local image
properties) in one frame with a set of sparse points in the following frame and choosing the best
fit (e.g., [98]). The latter is especially useful when large motions are expected. For an in-depth
review on object- and point-tracking, interested readers are referred to [171] or [146].

Returning to our initial problem, namely establishing temporal connectivity in video seg-
mentations, processing the entire video volume at once (e.g., [4, 32, 36, 53, 88, 160, 161]) can be
considered as one basic strategy. For example, when extending the previously discussed mean
shift segmentation [32, 36, 161] to videos, peaks are identified with respect to each pixel’s color
and location. DeMenthon et al. [36]’s mean shift version additionally adds OF to the pixels’
feature space. Considering an example in the field of interactive segmentation, in [160] a binary
graph cut optimization is defined across the entire video volume to obtain a binary segmentation
of a video. In [53] and [86], the previously discussed region merging approach from Felzenszwalb
and Huttenlocher [43] is extended to process videos by adding temporal edges to the adjacency
graph. These additional edges connect temporally neighboring pixels according to previously
computed optical flow vectors. Some recent segmentation approaches take on a more global view
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Figure 3.6: Illustration of common forms of motion information. a) Dense motion between pairs
of frames, e.g., optical flow: Each pixel has a motion vector (red) that points to a corresponding
pixel in the next frame. b) Sparse motion between pairs of frames, e.g., tracking: Motion
information (red) between pairs of frames is only determined for a few points. c) Long-term
motion: The entire motion path (blue) from the first to the last frame builds a long-term motion
cue (compared to the shorter motion paths between pairs of frames in b)).

when incorporating motion information in the segmentation process (e.g., [26, 86, 109]). These
approaches investigate long-term motion information, which can provide richer information than
local motion information (such as optical flow). For example, objects that initially exhibit similar
movement, but move apart in later frames, can be more easily separated from each other. To
this end, these approaches use tracking to derive point trajectories (e.g., [131, 145]) that can
expand across multiple frames (Figure 3.6 c)). Trajectories are then grouped according to global
motion similarity (e.g., [26, 86, 109]). However, as these trajectories are sparse, so too is the
segmentation result. In order to assign the remaining points to segments, additional information
(e.g., color [86, 109]) can be incorporated.

The second basic strategy is to establish temporal connectivity in video segmentations in a
frame-to-frame manner (e.g., [113, 122, 149, 160]). For example, in [149] active contours that
were computed in one frame are locally tracked [152] to the next frame. Likewise, in [122],
various segmentation cues that were extracted from the previous frame are transferred to the next
frame, using local motion vectors and tracked points. Subsequently, the cues are used to segment
the frame to which they were transferred to. In [160], segments that were obtained for each
individual frame are merged by applying a spatio-temporal mean shift segmentation procedure
to them. Relatedly, Paris [113] suggested a mean shift segmentation that only takes past frames
into account (as opposed to the entire video volume). Since the mentioned approaches process a
reduced amount of data compared to approaches that process the entire video at once, they are
more scalable. This is especially true for segmentation algorithms that rely on global optimization
and, thus, have to access all pixels in a video at the same time. A similar strategy to [113]
can also be used to reduce the runtime and the memory footprint of a segmentation approach.
To this end, a video can be split into overlapping sub-videos which are processed sequentially,
while incorporating methods for handling borders between the sub-videos to maintain the spatio-
temporal coherence of the segmentation (e.g., [53]).
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3.2.3 Edge-aware Interpolation

Besides discrete label-based solutions such as segmentation, semi-automatic 2D-to-3D conversion
is also closely related to sparse data interpolation problems (e.g., in Section 2.2.1). Contrary to
segmentation, interpolation does not restrict the solution to a prior given set of integer labels,
but allows pixels to be assigned to a mixture of labels. Such an interpolation ideally respects
the edge weights in G (i.e., adjacency graph in Section 3.2.1), e.g., is smooth in regions with
homogenous colors and allows abrupt changes at color edges. For the purpose of scribble-based
image and video manipulation a number of edge-aware interpolation approaches have been
proposed (e.g., [30,40,55,84,87,100,167,170]) in the field of edit propagation. In this context, an
image manipulation operation (e.g., colorization [84]) is specified with scribbles and interpolated
to the rest of the image or video. This section briefly discusses a few of these examples.

A fundamental example of solving such an interpolation is global regularization, which
was originally developed by statisticians to fit models to data (e.g., finding a smooth surface
through a set of sparsely given data points) [146,150] and was applied to various computer vision
problems (e.g., [56, 61, 84, 85, 87, 95]). In regularization, sparse data interpolation problems are
globally solved in the context of continuous optimization problems that assume a solution that
smoothly varies between closely related nodes and has a minimal distance to the sparsely given
data. When considering the graph-based representation G of an image or video, the smoothness
of the solution in a particular image area is controlled by G’s edge weights (or its corresponding
weighted adjacency matrix A, in Section 3.2.1). For simplicity such optimization problems
(e.g., those discussed in Section 2.2.1) are often expressed as quadratic energy functions, that can
be minimized by solving an equivalent linear system of equations using standard techniques (e.g.,
in the simplest case least squares estimation [84]). As alternative to quadratic energy functions
that tend to over-smooth the solutions for sparse user inputs and often cause halo artifacts
(i.e., inverse gradient) around objects [30, 66], robust regularization [146] uses non-quadratic
(robust) energy functions to further reduce the smoothness near color edges. However, in these
cases different iterative optimization techniques have to be used [146]. In any case, as pointed
out in many publications (e.g., [30, 55, 63]), solving the corresponding global optimization
problem in a global manner, inevitably results in low processing speeds and large memory
footprints, especially when working with videos or high-resolution images. Thus, previous works
in the field of edit propagation with focus on the improvement of the quality of their results
(e.g., [40, 55, 56, 87]) and with focus on the scalability of the problem (e.g., [30, 100]) have been
proposed. Concerning the former, in [87] and [56] this basic problem was extended by adding
“given data“ to increase the density of the user input and the quality of the results. This additional
“given data“ is previously determined by a classification according to the appearance (i.e., color)
of the marked pixels. Other proposed quality improvements include definitions of more suitable
similarity measures (e.g., [40]) or sparse models [167]) which relate each pixel to only a part of
the given user inputs to avoid over-smoothing (due to influence of several input data) in areas that
are far away from or in between user inputs. Related works in the field of edit propagation that
focuses on scalability includes the definition of the propagation in terms of segments as opposed
to pixels (e.g., [100]) or the prior propagation within sparser representations of images (e.g., [30]).

In some similarity to geodesic segmentation (which was briefly mentioned in Section 3.2.2.1),
efficient lowest-cost-path algorithms can also be used for edge-aware sparse data interpolation.
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For example, in [170] nodes in G without given data are assigned a weighted average of the given
data points. The weights are determined by geodesic distances (i.e., computed from the lowest
cost path in G) between each node without given data and each node with given data.

Although not specifically designed for sparse data interpolation, edge-preserving smoothing
techniques also achieve edge-aware interpolations, however, based on dense input data. More
precisely, given an image or video, these techniques aim to compute a new image that is similar
to the given one, but smoother in image regions that are similar in color, while still containing
its strong edges. In [39] this is achieved with a regularization that considers dense input data.
Additionally, joint filtering techniques that filter one image according to local weighted averages
in another image have been proposed (e.g., [46, 59, 69, 153]). To preserve strong image edges,
these techniques choose the weights according to local color similarities. In Section 2.2.2, we have
already discussed the usage of such filtering techniques in the context of 2D-to-3D conversion,
including recent advances on approximating the global optimization process in edge-aware data
interpolation problems by iterative edge-aware smoothing (e.g., [46, 82, 129]).

3.3 Evaluation

Missing evaluation benchmarks that are explicitly tailored to the problem of semi-automatic 2D-
to-3D conversion complicate the quantitative evaluation of the proposed conversion algorithms.
Ideally, such a benchmark not only provides suitable ground truth (GT), but also considers the
interactive component of such conversions. When comparing two semi-automatic conversion
algorithms, it makes sense to use exactly the same user input for both of them. However, this
information is usually not available from the published papers and the user interfaces of different
conversion algorithms vary (e.g., discussed in Section 3.1). In the context of user input, it
was pointed out in [76] that user-centric applications, which include semi-automatic 2D-to-3D
conversion approaches, are not only highly dependable on the given user input, but might also
prefer a certain type of user input over another. This observation further complicates the quality
assessment in the field. As in previous works, most of the evaluations in this thesis are performed
using the same input scribbles for all compared 2D-to-3D conversion approaches. However, in a
final contribution, in Chapter 6, we also consider different types of user input for our evaluations.

In this thesis and in the 2D-to-3D conversion literature, different recorded or computer-
generated 2D data and corresponding reference solutions are used to evaluate 2D-to-3D conversion
results. Below, we give examples for such data and discuss its usage for such evaluations.
Appendix A provides a more detailed description of the data used in this thesis.

The recorded test data used in this thesis comprise self-recorded stereoscopic videos (Fig-
ure 3.7 a)) and recorded stereoscopic images that are provided by the well-known Middlebury
stereo matching benchmark [132–135] (Figure 3.7 b)). Furthermore, monocular color videos
that were recorded with a special camera that captures a color video and additionally measures
depth (e.g., [42]) have been used to evaluate 2D-to-3D conversion results (e.g., in [28, 90]). In
case of the images from the Middlebury dataset, the provided corresponding GT disparity maps
are either a combination of hand-labeled and estimated disparity maps [134] or were generated
using structured lighting [132, 133, 135]. These images were originally intended for evaluating
stereo matching algorithms. For our self-recoded videos, the corresponding reference solutions



34 Chapter 3. Fundamentals and Related Work of 2D-to-3D Conversion

Figure 3.7: Reference solutions used in evaluation. Color images (top) and corresponding
reference solutions (bottom). Reference solutions are encoded by gray values: Foreground: bright,
background: dark. a) Disparity map generated by a stereo matcher [12]. b) Disparity GT from
the Middlebury stereo matching benchmark [134]. (Here, the disparity for black pixels is
not provided.) c) Depth GT from the MPI Sintel dataset [27], which provides the color videos in
three levels of difficulties (i.e., albedo, clean and final). The shown color frame is split into three
parts and each displays a different level of difficulty. The GT corresponds to the entire frame.

are disparity maps that were estimated using a stereo matching algorithm (i.e., [12]). In our
quantitative evaluations, we compare 2D-to-3D conversion results, i.e., the conversion-generated
disparity maps, with the respective reference solutions. The generated 2D-to-3D conversion
results are based on disparity scribbles that are drawn in the image or in the first and the last
frame of one (monocular) view from the stereoscopic image or video. Note that we completely
disregard the other view. The scribbles define which disparity should be propagated. To enable a
comparison with the reference solution, the disparities for the marked pixels are defined as the
disparities of the reference data at the scribble positions. For 2D-to-3D conversion algorithms
that support multiple disparities per scribble, the disparities from the reference solution can be
used directly. For algorithms that only support one disparity per scribble the definition has to
be adapted, e.g., to use the mean disparity of all marked pixels’ disparities for each individual
scribble. The subsequent comparison of the conversion-generated disparity map and the reference
solution gives a hint on the quality of the conversion process, relative to the quality of the refer-
ence solution. In this context, disparity maps obtained by stereo matching are typically inferior to
disparity maps obtained by structured light techniques [132,133,135]. However, the latter require
a special hardware setup to capture the disparity of each pixel. Reference solutions determined by
cameras that measure depth might suffer from high noise levels and systematic distortions [124].
While computer-generated test data might be most accurate, performing the conversion on real
(self-)recorded videos as opposed to computer-generated videos is a closer fit concerning the
practical operating conditions of a 2D-to-3D conversion algorithm.

The computer-generated test data used in this thesis are stereoscopic videos (e.g., Figure 3.7 c))
that were rendered with disparity GT (e.g., [102]) and monocular videos that were rendered with
depth GT (in meters) (e.g., [27]). The rendered GT directly results from the depth of the 3D models
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in a scene. The videos from [102] and [27] were originally intended for evaluating other computer
vision problems than semi-automatic 2D-to-3D conversion. The Tsukuba dataset was proposed
by [102] to evaluate stereo matching algorithms. The MPI Sintel dataset [27] (Figure 3.7 c))
initially only provided OF GT to evaluate algorithms that estimate OF. However, recently the
authors of [27] extended their dataset by the MPI Sintel Depth and MPI Sintel Stereo data, which
both can be used for the evaluation of 2D-to-3D conversion algorithms1. For the purpose of
evaluating our 2D-to-3D conversion results, the reference solution is used as discussed above
(i.e., propagation of reference solution at scribble positions and subsequent comparison with
the conversion result). Although being computer-generated and not (self-)recorded, this dataset
poses challenges for 2D-to-3D conversion algorithms, including fast moving objects, objects that
move in depth and color ambiguities between objects. The color videos are provided in different
levels of difficulty, e.g., one containing shadows, reflections and motion blur, while another one
is rendered without these effects. In Figure 3.7 c) the difference of these renderings can, for
instance, be observed at the dragon’s wing that has a solid color in the albedo rendering and is
transparent in the clean rendering. While the stone floor in the albedo and clean rendering is not
affected by the red twilight, the stone floor in final rendering takes on a reddish color tone. Given
these renderings, evaluations that focus on the sensitivity to their additional illumination effects
and, thus, caused color ambiguities can be performed.

Finally, it should be mentioned that in the 2D-to-3D conversion literature, evaluations focus
not only on quantitative comparisons of conversion results with reference solutions (e.g., [28, 31,
56, 58, 94, 156, 159, 175]), but also on user studies in which participants subjectively assess the
quality of the conversion results (e.g., [28,56,92,94,117,163,175]). In these cases, the subjective
quality of a generated disparity map, or more precisely, of stereoscopic data that was generated
from it, is evaluated. This evaluation strategy has two potential advantages. It keeps the user in
the loop and considers additional steps in the 3D content generation pipeline (i.e., novel view
generation). The accuracy of disparity maps does not necessarily reflect the quality of novel
views that were generated from it and the quality of the 3D impression that eventually emerges
from the generated data. For example, while an erroneous disparity assignment in homogenous
image areas is often barely noticed in stereoscopic viewing conditions, errors in textured or
salient image areas might lead to visible distortions. In fact, our published user study in [106]
shows that the results of quantitative evaluations of stereoscopically generated disparity maps
only weakly correlate with those of a corresponding subjective user study. Under consideration
of our field of 2D-to-3D conversion, this was recently also confirmed by Kellnhofer et al. [73].
They observe a wide tolerance to distortions that are common in this field (e.g., spatial and
temporal smoothing artifacts) when 3D content is viewed in stereoscopic conditions compared
to more sensitive responses to these distortions when performing a quantitative evaluation with
respect to a reference solution. Hence, in the context of 3D content generation subjective quality
assessments can be more meaningful than quantitative comparisons with GT disparities or with
other reference solutions. A major drawback of this evaluation strategy is, that it is labor-
intensive and time-consuming for both the person who conducts the study and for the participants
(e.g., approximately 40 minutes per participant to perform 64 trials [73]). Moreover, if the user

1Neither depth nor disparity GT were publicly released at the time our evaluations were performed. In our
evaluations we use an early version of the depth GT (in meters) that was provided by the authors of [27].
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study uses paired comparisons (e.g., as in [106]) the rapid growth in the number of required
trails (e.g., six images and seven approaches results in 126 trails) further limits the amount of
investigated content. This is especially the case, if the study considers videos. Therefore, in the
literature (e.g., [28, 31, 56, 58, 94, 156, 159, 175]) as well as in this thesis, video conversion results
are often evaluated by comparing them with reference solutions.

3.4 Summary

In this chapter, we have described fundamental techniques that are used in semi-automatic 2D-
to-3D conversion algorithms and concepts closely related to them. First, we have discussed two
common forms of user interaction, i.e., less labor-intensive, sparse scribble-based annotation and
more comprehensive boundary-based annotation. This discussion also included the feasibility of
annotating 2D content with disparity in general.

Then, we have given an overview of spatio-temporal video analysis techniques that are
relevant for the field of 2D-to-3D conversion. In this context, we have briefly discussed commonly
used graph-based representations of image and video content as a starting point. On this basis,
we have reviewed two fundamentally different approaches to establish spatial and temporal
relations between neighboring pixels, i.e., discrete spatio-temporal segmentation techniques and
continuos edge-aware sparse data interpolation techniques. While the former provide discrete,
hard boundaries between dissimilar pixels, the latter produce smooth interpolations of the given
data in the image or video. In the context of segmentation techniques, we have briefly discussed
popular interactive and automatic segmentation approaches and common strategies towards
spatio-temporal segmentation, which include the incorporation of motion information. In the
context of edge-aware sparse data interpolation, we have given an overview of the general
problem and have briefly discussed proposed improvements in terms of accuracy and scalability.
Although not specifically designed for sparse data interpolation, we have touched on edge-
aware filtering techniques which perform interpolations on dense input data, i.e., they smooth
images or videos. In the context of 2D-to-3D conversion, both approaches (i.e., segmentation
and interpolation techniques) have their individual advantages and disadvantages. In particular,
segmentation and hard boundaries facilitate the distinction between areas in which smooth
disparity changes are desired (i.e., inside objects) and areas in which smooth disparity variations
should be prevented (i.e., at object borders). Edge-aware interpolation techniques are able to
produce such smooth disparity variations, which are necessary to model disparity changes over
time and for rounded objects. However, when employing edge-aware interpolation techniques
over-smoothing and scalability issues have been reported. Hence, the algorithms that will be
presented in the subsequent chapters leverage both techniques aiming to combine their advantages.

Finally, we have briefly discussed issues considering the evaluation of 2D-to-3D conversion
algorithms, including evaluation benchmarks, the role of user input and the choice between
objective and subjective evaluations. In this context, we have given a brief description of
evaluation strategies that are used in the literature and this thesis.



CHAPTER 4
Segmentation-based 2D-to-3D

Conversion of Videos

4.1 Introduction

This chapter describes the first semi-automatic 2D-to-3D conversion algorithm that is presented in
this thesis. The proposed algorithm cost-efficiently converts 2D videos to 3D based on scribble-
based annotations in the first and last frame of the 2D video. As mentioned in the previous
chapters, related existing 2D-to-3D conversion algorithms mainly focus on segment-wise disparity
assignments or edge-aware interpolations, which can result in either not smooth enough conversions
(i.e., cardboard effect) or too smooth conversions (i.e., over-smoothing of object borders). We
propose a semi-automatic 2D-to-3D conversion algorithm that performs the disparity propagation
jointly with an automatic video segmentation. This joint approach is, to the best of our knowledge,
new for semi-automatic 2D-to-3D conversion. A subsequent spatio-temporal filtering step enables
smooth disparity changes within segments and over time and yields the final disparity video for
each frame of a 2D video. The main advantage of our approach over previous works comes from
the direct use of segmentation during the propagation process. Specifically, jointly performing a
segmentation preserves disparity edges at object borders, which is challenging for previous works.
Contrary to previous segmentation-based 2D-to-3D conversion algorithms (e.g., [29,44,91,165]),
the proposed algorithm models smooth disparity variations within segments.

In this chapter, we further describe a scalable, optimized GPU implementation of our 2D-to-
3D conversion algorithm. Our proposed acceleration leads to runtimes, e.g., one fps for a video
with a resolution of 640 × 480 pixels per frame.

We test our 2D-to-3D conversion algorithm on various videos and compare it to (GT) reference
solutions. These quantitative evaluations show that our proposed algorithm and its acceleration
generate disparity videos of high conversion quality and outperform a well-established semi-
automatic 2D-to-3D conversion approach [56] when using the same user input.

37
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Figure 4.1: Input and output example of proposed 2D-to-3D conversion algorithm. The first
frame a) and the last frame b) of the input video are annotated with scribbles, whose hues encode
disparity. The disparity map c) for an intermediate frame, generated by our approach, encodes
disparity by gray values. Copyright of original video: Warner Bros.

4.2 Proposed Algorithm

The proposed 2D-to-3D conversion algorithm consists of three steps. First, the user annotates
a 2D video with disparity scribbles (Section 4.2.1). Then a joint segmentation and propagation
algorithm identifies spatio-temporal segments in the 2D video and assigns disparities to each pixel
(Section 4.2.2). A final step interpolates disparities over time and refines the disparity video by
applying a smoothness filter (Section 4.2.3). Figure 4.2 illustrates the corresponding program flow.

4.2.1 Disparity Scribbles

As discussed in Section 3.1, scribbles are a common and effortless form of user interaction. Thus,
we have chosen a scribble-based user interface which enables the user to provide initial disparities
in the 2D video (Figure 4.1 a) and b)) as an input to our algorithm (Figure 4.2). For each 2D video
shot, the user draws colored scribbles in the first and in the last frame. The scribble colors indicate
whether the user believes the marked pixels are more in the foreground or more in the background.
Similar to [56], in our user interface the hues of the scribbles encode the (assumed) normalized
disparity for the marked pixels.1 In principle, it is enough to annotate, e.g., only the first frame
of a video. However, to indicate disparity changes over time, the last frame has to be annotated
as well. Contrary to various previous segmentation-based 2D-to-3D conversion approaches
(e.g., [82, 91, 165]), in our approach the scribbles are only used to initialize disparities and not to
guide a segmentation algorithm. Although at the first glance this decision might seem surprising,
it, in fact, has a practical motivation. Since objects (or segments) can be rounded or slanted, they
might contain multiple disparities and, hence, should be able to be marked with several scribbles
that encode different disparities. We also allow scribbles to contain disparity falloffs to indicate
slanted or rounded objects (e.g., Figure 4.1 a) and b), pool). Furthermore, different objects might
have the same disparity, and, hence, for simplicity should be able to be marked with a single
scribble without being forced to belong to one segment (e.g., Figure 4.1 a), person and glas). By
using scribbles only for disparity initialization, when performing the annotations users do not
have to consider borders between objects with the same disparity.

1After the 2D-to-3D conversion the resulting normalized disparity maps ∈ [0, 1] can be further adjusted for
different types of displays and viewing distances, e.g., by scaling or mapping them to a desired disparity range.
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Figure 4.2: Program flow of proposed segmentation-based 2D-to-3D conversion algorithm. The
joint segmentation and propagation (Section 4.2.2) iteratively assigns user-given disparities
(Section 4.2.1) to each pixel in a 2D video, which results in a dense disparity video. The
subsequent disparity interpolation and refinement steps (Section 4.2.3) spatio-temporally filter
disparities per-segment and independent of the segmentation, respectively. See text for details.

4.2.2 Joint Segmentation and Propagation

The basic idea of our algorithm is to propagate the user-given disparities to the remaining
pixels of the video while segmenting it. To this end, we adopt the segmentation algorithm of
Grundmann et al. [53] for our task. As we will describe in this section, the merging approach
of the segmentation algorithm agrees with our task of disparity propagation. The adopted video
segmentation algorithm [53] efficiently (one fps [53], corresponding frame resolution not provided
in [53]) produces temporal-coherent segmentations and can be applied to videos shots containing
motion, partial occlusions and illumination changes [53]. The segmentation algorithm comprises
two steps. First, a generalized version of an image segmentation algorithm [43] is applied, which
is based on region merging according to local pixel similarities. Then, neighboring segments (or
regions) are merged according to their segment similarity [53]. These steps use the same merging
process [43], but apply it on different graph-based representations of the video (Figure 4.2).
Below, we give a review of this algorithm and adopt it for disparity propagation.

We begin by discussing the generalization of Felzenszwalb and Huttenlocher’s image segmen-
tation approach [43] (Section 3.2.2) for videos and its adoption for disparity propagation. Let us
consider the graph-based representation G = (V,E) of the given 2D video and the user-provided
disparity scribbles (Section 3.2.1). In this pixel-graph, each pixel i in the video is considered as
a vertex vi ∈ V , which additionally stores a disparity if it was marked by a disparity scribble.
Vertices are connected to their spatial and temporal neighbors by edges eij ∈ E, where i and j
are pixels (vertices). Temporal edges either connect direct neighbors of a pixel in an adjacent
frame or when using optical flow (OF) [110], the neighbors along the corresponding OF vector.
To express the similarity of two connected pixels, each edge is associated with a weight wij ,
i.e., their normalized color difference [43]. In the following, these vertices are grouped into
segments. Initially, each vertex vi is considered as a segment Ri of its own. We traverse edges eij
in decreasing order of their weights wij . Following this fixed merging order, vertices connected
by an edge eij and their associated segments are merged if the internal variations [43] of both
segments are larger than the weight wij . The internal variation Int(Ri) of pixel i’s associated
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Figure 4.3: Propagation rule set. a)-c) illustrate possible merging scenarios for an edge eij (green)
that connects vertices vi and vj (and their associated segments that are connected by solid lines)
with disparities (gray) and without disparities (orange). a) Merging two segments without
disparity results in a segment without disparities. b) Merging a segment with and a segment
without disparities propagates the given disparity (i.e., from vj) to the pixels of the segment
without disparities. c) Merging two segments with disparities preserves them.

segment Ri can be considered as an adaptive threshold and is defined as [43]:

Int(Ri) = max
eij∈MST

wij +
τ

|Ri|
. (4.1)

In the first term of Equation (4.1), the maximal edge weight of the minimum spanning tree (MST),
which spans a segmentRi, is used to express a segments’s internal variation. Thus, color variations
inside a segment are tolerated. The second term of Equation (4.1) makes this expression dependent
on the segment size |Ri|. Since for small segments maxeij∈MSTwij is determined only from
a small number of edges, it might not be a good estimate [43]. Thus, the dependency on |Ri|
requires a stronger evidence for a segment boundary (larger edge weight) for smaller segments
than for lager ones. Furthermore, |Ri| is necessary for handling segments that consist only of one
vertex and, thus, no edges. In Equation (4.1), τ is a parameter which influences the precision of
the segmentation result (larger τ produces larger segments, but less accurate results [53]). Finally,
the number of segments is reduced by merging low-cost edges of segments containing less than a
fixed amount of pixels Tminsize in ascending order of their weights.

In the proposed semi-automatic 2D-to-3D conversion approach, we use the segmentation
algorithm described above to simultaneously propagate disparities when merging two segments
(Figure 4.2). Specifically, when forming segments by merging edges eij according to Equa-
tion (4.1), there are three possible merging scenarios with respect to the combinations of given
and not given disparities (Figure 4.3). eij’s vertices (and their associated segments) can have a
(user-given or propagated) disparity or the disparity is still unknown. As stated above, before ap-
plying our joint segmentation and propagation process each vertex is considered as a segments of
its own, which only has a disparity if it was covered by a user-scribble. If a segment with unknown
disparity is merged with a segment with known disparity, the known disparity is propagated to
the other segment, i.e., assigned to its pixels (Figure 4.3 b)). Secondly, merging two segments
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Figure 4.4: Joint segmentation and propagation process. a) Disparity scribbles in the first (top)
and last frame (bottom). Hues encode disparity. b) Pixel-wise over-segmentation of a middle
frame (bottom) and its corresponding propagation result (top). Orange pixels (top) have unknown
disparities. Different segments have different randomly chosen colors. c) Region merging,
i.e., segmentation of the region-graph (bottom) and corresponding propagation result (top). d)
Assignment of disparities to the missing segments and inter-segment smoothing (top). Result
after refinement step (bottom). Copyright of original video: FremantleMedia Limited.

without disparity also yields a segment without disparity (Figure 4.3 a)). Thirdly, if segments
with conflicting disparities are merged, their respective disparities are preserved (Figure 4.3 c)).
As a result, spatio-temporal segments may contain vertices with different disparities (e.g., blue
segment in Figure 4.4 c), second row contains different disparities for the wall and lamp in the
disparity map shown in Figure 4.4 c), first row). Note that this property is of particular importance
for segments that represent slanted surfaces or change their disparity over time.

The result of the pixel-wise segmentation and joint propagation process that was described
above is a spatio-temporal over-segmentation of the 2D video, in which some segments are
assigned to disparities (e.g., Figure 4.4). Note that for some segments the disparities remained
unknown (Figure 4.4 c), top, orange pixels) and, thus, have to be further merged applying our
propagation rule set. To this end, we represent the intermediate result as a graph (Figure 4.5). In
particular, we define a region-graph G = (V,E) (Figure 4.5 a)), in which each border pixel i
of a segment is a vertex vi ∈ V . Neighboring border pixels (vertices) that belong to different
segments, e.g., vi and vj , are connected by edges eij ∈ E. Edges have two weights (Figure 4.5 b)),
the color similarity of the connected border pixels wij and a segment edge weight wrij . Segment
edge weights are derived from a segment’s normalized color histogram and, if OF is used, their
per-frame OF histograms [53]. As suggested in [53], the color histograms are generated in the
LAB color space [146] and are typically divided into 20 bins per color channel L, A and B. Per-
frame OF histograms capture the motion for a specific segment for each frame. The mentioned
division into frames is necessary, since the motion of an object can change over time. Per-frame
OF histograms are further binned with respect to the OF vectors’ orientations (as in [53], we
typically use 14 bins for the orientation). The main reason for using these, more global descriptors
is that they provide a richer description of the intermediate segmentation result than pixel-wise
measures [53]. Contrary to the pixel-based differences that are used in the first segmentation step,
they also take the distribution of the colors and the motion within a segment into account. In case
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Figure 4.5: Illustration of region-graph. a) The over-segmentation of an image (left) is repre-
sented as a region-graph G = (V,E). The (semi-transparently) colored regions in the image are
segments. Region-graph (right) for the marked pixels (squares). The vertex colors correspond
to segment colors. The border pixels i and j of each segment are vertices vi, vj ∈ V and are
connected by eij ∈ E to neighboring vertices that belong to other segments. b) Illustration of edge
weights wij and segment edge weights wrij for an edge eij , that represent the similarity of the
two connected vertices (i.e., vi, vj) and the similarity of their associated segments, respectively.

motion information is not used during the segmentation and propagation process, the segment
weights wrij are defined as the χ2 distance of the normalized LAB histograms of two connected
segments. If color and motion similarity of segments are used, the segment weights wrij are
a combination of the χ2 distances of both histograms (dcij ∈ [0, 1] distance of normalized
LAB histograms, dfij ∈ [0, 1] distance of normalized per-frame OF histograms) [53]:

wrij = (1− (1− dcij)(1− dfij))2. (4.2)

Hence, the resulting weights are close to zero for segments with similar motion and color
properties and otherwise close to one. As in the pixel-wise algorithm, the region-wise algorithm
proceeds with traversing edges in ascending order of their weights and merges connected segments,
which may contain various disparities (e.g., Figure 4.4 c), Figure 4.2). To ensure that the
disparity of the most similar border pixel is propagated, edges are firstly sorted by wrij and
secondly by wij . We iteratively merge segments and jointly propagate disparities by applying the
previously described merging process (Figure 4.2). As suggested in [53], in each iteration the
parameters Tminsize and τ are scaled by the factor 1.1. To accelerate the algorithm, the iterative
process can be stopped before all segments contain pixels that are assigned a disparity. The
remaining segments can be assigned to disparities from neighboring segments with disparities
that are connected by low-cost edges (in ascending order of their weights).

4.2.3 Disparity Interpolation and Refinement

Having applied our joint segmentation and propagation step (Figure 4.2), every video pixel is
associated with a disparity (e.g., Figure 4.4 d), Figure 4.6 b)). However, the current disparity
video does not capture fine details (e.g., hair) and contains abrupt temporal disparity changes. For
instance, a segment with a low disparity in the first and a high disparity in the last frame consists
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Figure 4.6: Segment-wise disparity interpolation. a) Annotated first (top) and last frame (bottom)
of a video. Scribble hues encode disparity. The hues of the scribbles on the lamp, table and head
change slightly. b) Disparity maps (foreground: white, background: black): Joint segmentation
and disparity propagation of the video (top) and subsequent segment-wise disparity interpolation
(bottom). Marked (red arrows) objects contain multiple disparities. c)-d) Temporal slice for a
scan-line (i.e., y = 231, blue line) in disparity video, before c) and after d) segment-wise disparity
interpolation. Note that d) is smoother than c). Original 2D video from [102].

only of pixels with these two disparities. Figure 4.6 shows an example of this case, in which three
foreground objects (lamp, table and head) change their disparities over time. The disparities that
were defined in the first frame are dominant in the first frames compared to the disparities that
were defined in the last frame, and vice versa. In the intermediate frame, these objects contain
a more balanced mixture of these disparities. Since the disparity changes computed so far are
abrupt, these segments have to be processed further to obtain a spatially and temporally smooth
conversion result (Figure 4.2, disparity interpolation & refinement).

To interpolate disparities over time, we apply a spatio-temporal filtering technique on the
current disparity video. In particular, we extend the guided filter [59] (GF), which was originally
developed to process images, to perform spatio-temporal video filtering. GF locally smoothes
a given image, but preserves its colors at edges detected in a second input image. In order to
perform edge- and motion-preserving smoothing of video content, we use three-dimensional
instead of the originally proposed two-dimensional filter windows (and kernels). In particular,
the smoothed disparity d′i, which is associated with the not filtered disparity di at pixel i in the
current disparity video, is determined by a weighted average of di’s neighboring pixels [59]:

d′i =
∑
j

Wi,j(I)dj , (4.3)

whose weights are determined from the 2D input video’s pixels Ii by:

Wi,j =
1

|ω|2
∑

k:(i,j)∈ωk

(1 + (Ii − µk)T (Σk + εU)−1(Ij − µk)). (4.4)
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Here, ωk is a spatio-temporal window, with spatial radius rs and temporal radius rt, that is
centered around a pixel k. i and j are pixels in ωk. |ω| is the number of pixels in ωk. Ii and Ij are
color vectors (3× 1). µk (3× 1) is the mean color vector in ωk and Σk (3× 3) is the covariance
matrix. U is the 3× 3 identity matrix. The filter’s sensitivity can be controlled by ε (a higher ε
leads to smoother videos). Analogue to its spatial version [35, 59], the spatio-temporal GF can be
implemented as a series of local box filters (i.e., computes mean of pixels in a filter window) and,
thus, has as well a linear time complexity. Specifically, in Equation 4.3’s implicit computation
that is given below, the summations correspond to box filters implemented as in [35]:

ak = (Σk + εU)−1
( 1

|ω|
∑
i∈ωk

Iidi − µkdk
)
, (4.5)

bk = dk + aTk µk, (4.6)

d′i = ai
T Ii + bi. (4.7)

Here, dk is the mean of all disparities di in ωk. ai (3 × 1) and bi are the means of the linear
coefficients ak (3× 1) and bk in ωi, i.e., ai = 1

|ω|
∑
k∈ωi

ak and bi = 1
|ω|
∑
k∈ωi

bk.

We apply the spatio-temporal GF on each spatio-temporal segment that contains a mixture
of disparities. It is applied per segment, excluding the remaining pixels of the video. Due to
GF’s edge-preserving properties, we smooth the disparity video of a segment in areas that have
similar colors in the input video and preserve disparities at spatio-temporal edges in the input
video. By choosing rt as large as a quarter of the number of frames contained in a particular
segment, we are able to obtain smooth disparity changes over time. In order to preserve edges at
segment borders despite the potentially large window size, only disparities within such segments
are smoothed. Considering the previously discussed example, i.e., Figure 4.6, it can be seen
that this segment-wise interpolation step smoothes temporal disparity changes over time. This
is especially visible in the corresponding time slices, in which the abrupt temporal change in
disparity in Figure 4.6 c) is replaced by a smooth temporal change in disparity in Figure 4.6 d).

A second step (optional) refines the disparity video by applying GF (with smaller rs and rt)
to the entire disparity video. As above, the disparity video is filtered under the guidance of the
input video. This means that the disparities of pixels with similar colors are smoothed, while
disparities at spatio-temporal color edges in the input video are preserved. Textured surfaces of
constant disparity keep their disparities, while homogenous surfaces with different disparities are
smoothed. Furthermore, GF is sensible to fine image structures. Hence, it can reveal details in
the disparity video that have not been captured before (Figure 4.4 d), plants).

4.3 Efficient Implementation Using Multicore Technology

Although the 2D-to-3D conversion described above adopts two efficient algorithms [53] and [59],
its unoptimized implementation and the large amount of data given by a 2D video can lead to long
runtimes (e.g., 450 seconds for a video with 20 frames with a resolution of 600 × 255 pixels).
Thus, we further propose an optimized implementation of the 2D-to-3D conversion algorithm.

As discussed in Section 2.2, salability and efficiency were already addressed by various
2D-to-3D conversion algorithms. A common strategy for reducing their runtimes is a reduction
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of the given data, e.g., by prior downsampling of the video [56] or segmentation of pixels to
groups that are subsequently processed together [44]. Another strategy is the parallel processing
of computationally expensive tasks on the GPU [163], which can lead to a major reduction of
an algorithm’s runtime. We use the latter strategy to reduce the runtime of our semi-automatic
2D-to-3D conversion algorithm. Thus, we re-implement the most computationally expensive
parts of the joint segmentation and propagation algorithm (Section 4.3.1) and the interpolation
and refinement step (Section 4.3.2) on the GPU, using NVDIA CUDA [108]. CUDA is a
parallel computing platform and programming model by NVDIA that allows the simultaneous
execution of a large number of (independent) programming tasks, threads, on different processing
units. After transferring given data from the CPU to the GPU, the same programming task
can be simultaneously performed on different portions of the data, i.e., each thread processes
a different portion of the given data. To take full advantage of the GPU’s abilities, not only an
algorithm’s decomposition in parallel computations, but also the CUDA architecture, i.e., memory
management, has to be taken into account. For example, data that is stored in the GPU’s global
memory, which can be accessed by all threads, is accessed via 128-byte memory transactions
and is accordingly organized into memory segments. Ideally, threads running in parallel access
different data portions that are, however, stored in the same memory segment (coalesced memory
access). When accessing different memory segments in each thread (uncoalesecd memory access),
more memory transactions are necessary and more unused data per thread has to be loaded from
the memory (memory transfer overhead). This can lead to increased runtimes and, thus, should
be avoided by, e.g., optimizing memory-access patterns or adding (unused) data (padding) to
ideally divide data among threads. While the brief description given above only scratches the
surface of the CUDA architecture and its usage for accelerating computer vision algorithms,
interested readers are referred to the CUDA programming guide [108] for a more comprehensive
description. In context of memory management, it is worth to note that the GPU’s memory is
typically smaller than the CPU’s memory, which hinders the parallel execution of large data like
videos. Our optimized implementation further takes this limited capacity of the GPU’s onboard
memory into account. We propose a simple clip-based 2D-to-3D conversion algorithm for long
videos (Section 4.3.3). Our algorithm splits long videos into smaller sub-videos (clips) and
processes them sequentially while incorporating methods for handling borders between clips.

The main contribution of the optimized version of our 2D-to-3D conversion algorithm is a
significant reduction of the runtime while maintaining the quality of its results. In particular,
evaluations (Section 4.4) show that it accelerates the 2D-to-3D conversion algorithm by a factor
of approximately 226 per frame (resolution of 660× 336 pixels).

4.3.1 Joint Segmentation and Propagation

We reduce the execution time of the segmentation and propagation algorithm by implementing
computationally expensive parts on the GPU, where they are processed in parallel. As discussed
in Section 4.2.2, the joint segmentation and disparity propagation essentially consists of three
steps: (1) generating the graph-based representation of the initially given data, (2) pixel-wise
over-segmentation and (3) generation of a region-graph for region merging. The region-graph is
then iteratively segmented by repeatedly applying steps (2) and (3). Since the over-segmentation
in step (2) is generated iteratively, i.e., merging operations depend on the previously performed
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merging operations, it is not suited for parallelization and remains unchanged.
We parallelize step (1) by processing each pixel of a given video in one thread. Specifically,

for each pixel i, we compute edges eij and their weights wij for its right, bottom and temporal
neighbors j. Thus, the generation of the graph-based representation including the computation of
the edge weights is performed in parallel.

The optimization of step (3) is more complex. It comprises the selection of edges between
pixels of different segments from the initial edges eij in (1) and the computation of their additional
weightswrij that are based on χ2 distances between histograms. First, the LAB histograms and the
per-frame OF histograms for each segment are initialized in the GPU’s global memory and built in
parallel. Each pixel is processed in one thread. It increases a bin in the histogram corresponding
to its associated segment. To prevent writing conflicts, this is implemented with CUDA’s atomic
functions. Next, the edges of the region-graph are generated in parallel. As previously described,
edges in the region-graph (Figure 4.5) have two weights, the edge weights wij that express the
similarity of the vertices (i.e., border pixels) and were already computed in (1), and the segment
edge weights wrij that express the similarity of their associated segments. The calculation of
the segment weights wrij is very time consuming, since they depend on χ2 distances between
histograms. Thus, reducing the time needed for these distance calculations and their number
leads to a significant reduction of the overall runtime. Each edge eij that connects two border
pixels between two specific segments has the same weight wrij . Redundant histograms distance
calculations for these eij between two specific segments should be avoided. We calculate the
histogram distances for each neighboring segment pair only once and store them in a distance
buffer. For that purpose, during edge generation, we first determine which unique distances need
to be calculated and select the relevant eij from (1). Next, all required histogram distances can
be calculated in parallel, i.e., one distance calculation per thread, on the GPU and stored in the
distance buffer. The final segment weights wrij can be calculated in parallel, i.e., each edge in
one thread, using the pre-calculated distances from the distance buffer.

In each of the parallel processing tasks described above the memory-access patterns are
coalesced. Thus, no further memory optimization has to be performed.

4.3.2 Disparity Interpolation and Refinement

We reduce the runtime of the interpolation and the refinement steps (Section 4.2.3) by adapting
an optimized GPU implementation of GF [59] that is used in [62]. GF can be implemented as a
sequence of box filters. Since box filters are separable, i.e., can be applied independently for each
direction, their filtering operation can be performed in parallel. The box filters are computed by
consecutive running sums in horizontal (x), vertical (y) and temporal (t) direction [35]. For each
direction, these sums are computed in parallel by processing each row, column or temporal vector
in a thread. For a (padded) video that is given in row-major order and stored in global memory, y-
and t-direction are coalesced and, thus, not require memory optimization. However, the access
pattern is uncoalesced when filtering in x-direction, which can cause elevated runtimes. Thus,
we compute the running sums in x-direction by first re-arranging, i.e., transposing, the video
frames in global memory and subsequently performing the computations for the x-direction in
y-direction in the re-arranged frames. After determining the running sums for the x-direction in
this uncoalesced memory access pattern, the video frames are re-arranged to their original form.
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Figure 4.7: Efficient disparity interpolation, i.e., segment-wise filtering in y-direction. a) Initial
approach: All three segments (color-coded) are filtered (red arrows) in a separate filtering step.
b) Optimized approach: First, count pixels per segment (e.g., red numbers correspond to first
column). Then, filter (red arrows) each segment separately in a single filtering step.

While in the refinement step GF’s CUDA implementation of [62] is sufficient, this is not the
case when performing segment-wise disparity interpolation. In the interpolation step disparities are
smoothed over time by applying the GF on each spatio-temporal segment of a video in a separate
filter step (Figure 4.7 a)) that masks out pixels that are not in the current segment. Hence, the runtime
increases proportionally with the number of segments in the video2. Thus, we propose an efficient
segment-wise GF that is capable of filtering all segments in a single filter step3 (Figure 4.7 b)). For
each direction, the segment-wise filter first counts the number of pixels within the current segment
and then filters (i.e., box filter) the covered pixels until the segment border of the current segment
is reached. Then, we proceed with the next segment until all segments have been processed. In
this manner, we are able to perform a segment-wise filtering in a single filtering step that is nearly
independent of the number of segments in the video. Note that through the additional effort of
counting pixels within segments the runtime slightly increases with the number of segments.

4.3.3 Clip-based 2D-to-3D Conversion

Due to the limited capacity of the GPU’s onboard memory only short videos can be processed at
once (depending on the video resolution and the GPU’s memory). This limitation affects the joint
segmentation and propagation as well as the interpolation and refinement steps. We address this
problem by partitioning videos that are too long to be processed at once into shorter sub-videos (clips)
and processing them sequentially on the GPU. To preserve temporal coherence between clips, we
employ the standard strategy of including a fraction of the frames from the previous clip in the current
one. Specifically, for the interpolation and refinement step, the overlapping part between clips equals

2If, independent of a segment’s scope, the entire video is filtered for each segment, the runtime increases proportion-
ally by the factor of N with each segment. Here, N denotes the number of pixels of a video. (However, in practice,
segments that contain only a single disparity can be skipped.)

3In the optimized segment-wise filtering step all segments are filtered with the same filter parameters. rt is set to a
quarter of the number of frames contained in the processed video.
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Figure 4.8: Illustration of clip-based disparity propagation. A video with the frames Fi to Fj is
split into two clips: Fi to Fk and Fk to Fj . To enable temporal disparity changes, the clip-based
2D-to-3D conversion has to take disparity scribbles (colored lines) from the first frame Fi and
the last frame Fj into account. Disparity scribbles for the last frame of the first clip, i.e., Fk, can
be provided through feature matching (indicated by red arrows). See text for details.

the radius of the temporal filter window that was chosen for the respective filter procedure. Thus, the
discussed filter operations in the interpolation and refinement step can be performed across clips.

When handling clip-borders for the joint segmentation and propagation step, the last frame
of a clip equals the first frame of the following clip. During the segmentation of a clip each
pixel receives a segment label, which indicates to which segment it belongs. Since, especially in
the context of segment-wise interpolation, segments should extend across clips, the consistency
of segment labels between clips has to be considered. Thus, additionally to the frame itself,
we also copy the already obtained segment labels and disparities for all pixels in the last frame
of the previous clip (i.e., vertices in the graph-based representation of the previous clip) to
their corresponding pixels in the first frame of the following clip. For simplicity’s sake, in our
implementation, the segmentation in one clip is performed independently of the already formed
segments, i.e., the computation of a segment’s internal variation is only based on the current clip4

(Section 4.2.2 and Section 4.3.2). Similarly to the propagation of disparities, when merging a
vertex with a previous clip’s segment label with a vertex that does not posses this information, the
merging process additionally copies the segment label to the latter vertex. Therefore, segments
can extend across clips. Note that this does not hinder the segmentation from generating a new
segment (with a new label that was not available in the previous clip).

In order to propagate disparities between clips and model disparity changes in time, predefined
scribble disparities in the first and last frame of each clip are needed. However, these disparities
are only available in the first frame Fi and last frame Fj of the whole video (Figure 4.8). Hence,
we copy them to each clip’s border frames by using SIFT (Scale Invariant Feature Transform [98]).
Specifically, to copy the scribble disparities from Fi and Fj to an intermediate frame Fk, we
proceed as follows (Figure 4.8): First, we extract SIFT features [98] from all three frames. We
then match the features between Fi and Fk, using only robust matches5 [98]. If the pixels at
the feature positions in Fi contain disparities, we copy them to the corresponding pixels in
Fk. To obtain as many disparities as possible, we include neighboring pixels within a fixed
radius (e.g., ten pixels) if their color differences to the corresponding pixels are below a fixed

4Transferring the internal variations from previous clips might further improve the segmentation and propagation result.
5The similarity of robust SIFT feature matches is below a threshold Tf [98]. Tf is automatically set to two times

the smallest match similarity that was observed for the SIFT features in a video.
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threshold (e.g., Tc = 0.1). Next, we copy the scribble disparities from Fj to Fk in the same
manner. If a pixel in Fk already received a disparity in the previous step, we use the average of
the disparities from Fi and Fj weighted by the respective distance to Fk. It has to be noted that
the quality of the 2D-to-3D conversion results is limited by the quality of the feature matching
results. In this simple solution, a small number of features typically leads to more propagation
errors in the final results (i.e., missing information from scribbles in intermediate frames)6.

4.4 Experimental Results and Evaluation

We applied our 2D-to-3D conversion algorithm to a variety of monoscopic video shots, including
sport scenes (Figure 4.9 a) and b)), broadcast videos (Figure 4.9 a), c) and d), Figure 4.10 a)
and b)), animated (Figure 4.9 c)) and self-recorded (using a conventional camcorder) videos (Fig-
ure 4.9 b)). The videos shown in Figure 4.9 consist of 15, 15, 8 and 71 frames, respectively. The
videos shown in Figure 4.10 contain 20 and eight frames, respectively. In each video the first
and the last frames had to be annotated to obtain the shown results. On average, 23 frames with
an average resolution of 595× 334 pixels were annotated with disparity scribbles in the range
of [50, 247]. We obtained temporally coherent disparity videos, which reflect temporal disparity
changes due to objects’ motion (Figure 4.10 a) and b)). As shown in Figure 4.9, Figure 4.10
and Figure 4.11, our results adapt well to the corresponding scenes and objects. They contain
homogenous disparity areas with hard disparity edges as well as plausible disparities in slanted
or on rounded surfaces. The conversion algorithm is able to capture fine structures and small
objects (Figure 4.9 b) and c), Figure 4.10 a)). It can be seen that our algorithm deals with partial
occlusions (Figure 4.10 a) and d)) and dynamic scenes. In case of full occlusions, the proposed
algorithm uses neighboring segments to guess the disparity. However, one full occlusion of an
object with constant disparity in the entire video can still lead to plausible results, assuming
the respective reference data in the first and last frame are available. We observed limitations
when the segmentation algorithm fails and noticed halos in the disparity maps near some color
edges (disadvantage of using [59]). In the examples given in Figure 4.11, we used our conversion
results b) and the given monoscopic video a) to generate a second, novel view c) for two of the test
videos. The shown novel views were generated with a professional stereoscopic software [144]
that can also be used to adjust the desired depth effect and create virtual camera perspectives
from 2D and disparity data. These examples show that our generated disparity maps are well
suited for further processing concerning (auto-)stereoscopic viewing conditions.

Quantitative evaluation and comparison to [56] We quantitatively compare our algorithm to
Guttmann et al.’s semi-automatic 2D-to-3D conversion algorithm [56]7 on five test videos
that were recorded by a stereoscopic camera. In Appendix A, we provide visual examples
for these videos and their reference solutions. To obtain their reference solutions, we apply
a stereo method [12], which derives a disparity video for each input video8. Similar to the
regular user input (Section 4.2.1), we draw scribbles in the first and the last frame of the

6Lowering Tf can increase the number of matches, but also increases the likelihood of false matches which might
lead to propagations of wrong disparities.

7We use the parameters that were suggested by the authors in [56].
8Note that we only use one of the views for evaluating our algorithm.
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Figure 4.9: Our 2D-to-3D conversion results. Input video with scribbles (top): Scribble hues
encode disparity. Our obtained disparity maps (bottom): Foreground: bright, background: dark.
Copyright of original videos: a) BBC. c) Cartoon Network. d) Warner Bros.

videos. Likewise the scribbles define which disparities should be propagated. To make
a comparison with the reference solution possible, the disparities for the marked pixels
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Figure 4.10: Our 2D-to-3D conversion results with temporal disparity changes. Input video with
scribbles (top): Scribble hues encode disparity. Our disparity maps (bottom): Foreground: bright,
background: dark. Our results capture the temporal disparity changes of the persons that move
towards the camera. Copyright of original videos: a) Universal Pictures. b) ABC Studios.

Table 4.1: Quantitative evaluation and comparison to [56]. Our algorithm with and without the
usage of optical flow (OF) (left) and our implementation of Guttmann et al.’s algorithm [56] (right)
are compared to the reference solution [12]. The table lists the mean squared error (MSE)
(i.e., averaged over all pixels) of the disparities. The MSEs are multiplied by 100.

Video MSE, with OF MSE, without OF MSE for [56], with OF
City 0.32 0.56 10.30
Parade 0.23 0.23 6.87
Palace 1.01 1.39 8.51
Stairs 0.19 0.31 1.56
Football 0.23 0.33 4.95

are defined as the disparities of the reference data at the scribble positions9. Table 4.1
lists the mean squared error (MSE) averaged over all pixels of a video for our 2D-to-3D
conversion algorithm and our implementation of Guttmann et al.’s algorithm [56]. More
precisely, the MSE between each pair of corresponding pixels i, one in the reference

9As mentioned in Section 4.2.1 we work with disparity maps that were normalized with respect to the entire video
shot, and, hence, also propagate normalized disparities, i.e., ∈ [0, 1].
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Figure 4.11: Novel views generated from proposed conversion results. a) Input frame. b) Cor-
responding generated disparity map (foreground: bright, background: dark). c) Novel view
generated by using a) and b) with a software that can be used for novel view generation [144].
The conversion results used in this example correspond to videos shown in Figures 4.9 and 4.10.
Copyright of original video: First row: Universal Pictures. Second row: Warner Bros.

solution dref,i ∈ [0, 1] and one in the conversion result d′i ∈ [0, 1], is determined by:

MSE =
1

N

∑
i∈dref

(d′ref,i − di)2, (4.8)

whereN is the number of pixels in the reference solution. We evaluate our algorithm in two
versions, one version with and one version without making use of OF in the graph-based
representation of the video and as a feature in the segmentation. When employing OF,
we use the same OF fields as [56], i.e., dense OF fields obtained by [110]. Therefore, the
performed comparison is independent of the motion information.

Figure 4.12 shows the results for two test videos (Figure 4.12, City (top), Stairs (bottom)).
It can be seen (Figure 4.12, Table 4.1) that our algorithm produces disparity maps of high
quality, i.e., which are close to the reference solution. More importantly, we outperform
the previous work by Guttmann et al. [56] using the same user input for both algorithms
(Figure 4.12, Table 4.1). Our algorithm adapts better to the underlying scenes and generates
disparity maps in which disparity edges at object borders are preserved. This is also true
for longer videos (e.g., Figure 4.12, Stairs with 45 frames). Contrary, due to the increased
sparsity of the user input in longer videos (i.e., number of annotated pixels compared
to not annotated ones) [30,66], Guttmann et al.’s algorithm [56] severely over-smoothes
their disparity maps. As an additional advantage over [56], we are able to spare OF
and still obtain similarly good results (Table 4.1). When we examine the error maps in
detail, we notice limitations at borders of moving objects (Figure 4.12 b)-d)) and when
the segmentation algorithm encounters problems, such as objects with similar color (and
motion). Considering the former limitation, the refinement step reduces the error at motion
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discontinuities. In this context, it is important to recall that the comparison is performed
with a stereo generated reference solution which, as well, might contain disparity errors
near objects borders. Figure 4.12 b)-d) illustrates that our approach is able to reflect
disparity changes due to object’s motion in its result. Note that for the object that moves
in depth (e.g., Figure 4.12 c), Stairs, person), the difference in the error maps is caused
from different velocities of the disparity changes in the reference solution and our disparity
videos. Since we assume linear disparity changes from the first to the last frame, deviations
from this model (e.g., irregular movement) are not taken into account.

Quantitative evaluation of region merging step’s influence on conversion quality. In [53],
Grundmann et al. point out that their additionally performed region merging step leads to
better segmentation results than a segmentation without it. In this experiment, we test if our
2D-to-3D conversion results behave analogously. To this end, we compare two versions
of our 2D-to-3D conversion algorithm: (1) the full conversion algorithm as described
from Section 4.2.1 to Section 4.2.3 and (2) a faster shortened version that is only based
on pixel-wise merging, i.e., without further merging of segments according to a region-
graph. Instead we merge low-cost edges in the pixel-graph to achieve a conversion that is
based on the same number of segments as in (1). Similar to the previous evaluation, our
conversions are performed using normalized ground truth (GT) values at scribble positions.
Motivated by [76], we place scribbles automatically within spatially connected regions of
constant (T0) disparity in the GT (disparity regions) and within disparity regions that can
contain disparity edges that differ by one (T1). Hence, placing a dot scribble (DS), i.e., a
dot shaped brush stroke (e.g., Figure 4.14), in the center of each region results in two sets of
input scribbles, i.e., DS T0, which is denser, and DS T1, which is sparser. Analogously, we
generate thinning scribbles (TS) by thinning disparity regions, which results in scribbles
that more closely resemble typical user-annotations (e.g., Figure 4.13).

In Table 4.2 (top), we compare our converted disparity maps to GT disparities from the
Middlebury stereo benchmark [134] (i.e., 35 left views). For these images, the following
parameters are used for (1) and for (2): segmentation parameters {τ = 0.3, Tminsize = 20,
(7 iterations for (1))}, segment-wise GF parameters {rs = 9, ε = 0.0001} and GF
parameters for refinement {rs = 3, ε = 0.0001}. In Table 4.2 (bottom), the comparisons
are performed on five videos from the Sintel dataset10 [27] and two videos from the Tsukuba
dataset [102] that were provided with depth GT [27] and disparity GT [102]. Appendix A
provides visual examples for the image, videos and their GT. Scribbles were automatically
placed in the first and last frames of each video and are initialized with normalized and
inverted GT depths [27] or normalized GT disparities [102]. For these videos, following
parameters are used for (1) and for (2): segmentation parameters {τ = 0.3, Tminsize = 110,
(7 iterations for (1))}, segment-wise GF parameters {rs = 12, ε = 0.0001} and GF
parameters for refinement {rs = 9, rt = 2, ε = 0.0001}.

Table 4.2 confirms that, in case of the tested images and videos, the full conversion algorithm
with region merging is closer to the GT than the shortened conversion without region

10The authors provided us with color videos and corresponding rendered depth data, before officially extending the
Sintel Flow dataset [27] to additionally provide depth and disparity ground truth.
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Figure 4.12: Quantitative evaluation and comparison to [56]. Per video (City, Stairs): a) Scribbles
(first and third row) and reference solution (second and fourth row) of first and last frame. In
the reference solution: White fore- and black background. b)-d) Our result (first row) and
corresponding error map (second row). In the error map, dark and white pixels denote low and
high errors, respectively. Disparities (third row) obtained by our implementation of [56] and
corresponding error map (fourth row). Our result: hard edges. [56]: Over-smoothed edges.

merging. For the dataset that contains images (Table 4.2, top) and for the dataset that
contains videos (Table 4.2, bottom) the MSEs of the full conversion are throughout lower
than those of the shortened conversion. Figure 4.13 shows conversion results obtained with
the full and the shortened 2D-to-3D conversion algorithm for TS T0 and TS T1. It can be
seen that the disparity maps generated by the full conversion adapt better to the objects in the
scene and discriminate between ambiguous image regions (e.g., color similarities between
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Table 4.2: Quantitative evaluation of region merging step’s influence for images from [134] and
videos from [27,102]. Results from the full and the shortened conversion algorithms are compared
to GT. The table lists the MSE averaged over the dataset and multiplied by 100. The conversion
was performed based on computer-generated scribbles (TS and DS) (see text for details).

MSE Full conversion Shortened conversion
2D content TS T0 TS T1 DS T0 DS T1 TS T0 TS T1 DS T0 DS T1

images [134] 0.08 0.31 0.53 2.97 0.08 0.42 0.64 3.71
videos [27, 102] 0.65 0.77 0.94 2.97 0.67 0.88 1.09 3.91

doll and map). For videos, this can also be observed in Figure 4.14. In this particular
scene color similarities (e.g., brown rock and brown hair or beard) and large motions pose a
challenge to the conversion algorithm. These observations indicate that the segment-based
similarity measure that is used in the full conversion algorithm is more stable concerning the
mentioned color similarities than the local pixel-wise measures that are used in the shortened
conversion algorithm. Hence, in case of our task of 2D-to-3D conversion, Grundmann et
al.’s [53] observation is confirmed. Furthermore, Table 4.2 demonstrates that denser scribble
input (i.e., T0) leads to better conversion results than sparser scribble input (i.e., T1).

Computational efficiency evaluation of optimized 2D-to-3D conversion algorithm. We eval-
uate the optimized 2D-to-3D conversion algorithm from Section 4.3 by comparing its runtimes
to its not optimized version from Section 4.2 and by comparing the conversion results against
GT. For these experiments we used a PC with an Intel Xenon E5 processor with 3.6GHz,
32GB RAM and a NVIDIA GeForce GTX 680 GPU. The runtimes of the joint segmenta-
tion and propagation step and the runtimes of the interpolation step of our optimized GPU
implementation (C++/CUDA) and the unoptimized implementation (C++) are compared
separately. On the one hand, the evaluation in terms of runtimes is performed on a video with
20 frames (600× 255 pixels), a downsampled sub-video from Alley1 (Appendix A, Sintel
dataset11 [27]). For this video we also provide runtimes consumed by the interpolation step
for different segmentation granularities. On the other hand, the computational efficiency is
evaluated on eight additional videos without considering different segmentation granularities.

For the joint segmentation and propagation step, the unoptimized and the optimized
implementation consume 450.10 and 9.95 seconds, respectively when processing the
single test video mentioned above. Hence, for this video, the optimized implementation
is 45 times faster than the unoptimized one. Table 4.3 gives a more detailed efficiency
evaluation of this step by listing runtimes for eight videos. In this table the optimized
implementation is, on the average, 35 times faster than the unoptimized implementation.

Figure 4.15 reports the runtimes of a CUDA12 implementation of the initial segment-wise

11At the time the evaluations were performed, no GT data was available for this test video.
12In the initial, not optimized implementation of the proposed 2D-to-3D conversion algorithm, the segment-wise

interpolation is implemented in C++. However, in this experiment a CUDA implementation is used to highlight
the algorithmic contribution of its optimized version. Figure 4.15 lists the runtimes of the CUDA implementation.
The runtimes of the C++ implementation of the initial segment-wise interpolation are 1945 and 4200 seconds for a
segmentation into 1063 and 2295 segments, respectively.
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Figure 4.13: Evaluation of region merging step’s influence. Results for Baby2 of our a) full and
b) shortened 2D-to-3D conversion algorithm. The results are based on GT disparities (bottom) at
computer-generated scribble positions (blue), i.e. TS T0 and T1. Original image from [134].

interpolation approach (i.e., each segment is filtered in a separate filtering step), and the
optimized CUDA implementation (i.e., all segments are filtered in one filtering step) when
processing the single test video mentioned above. Both segment-wise GF implementations
are applied to segmentations of the original video into 1063 and 2295 segments (Fig-
ure 4.15). Table 4.4 list these runtimes for eight additional test videos, however, without
considering different segmentation granularities. As shown in Figure 4.15 and Table 4.4,
the optimized implementation consumes significantly less time than the initial approach, in
which the runtime of segment-wise filtering increases proportionally with the number of
segments. Contrarily, the runtime of the optimized approach increases only slightly with
an increasing number of segments (caused by counting pixels within a segment).

When considering the single video mentioned in the beginning the optimized 2D-to-3D
conversion algorithm, i.e., the joint segmentation and propagation and the optimized
segment-wise interpolation steps implemented in CUDA, consumes 10.57 seconds ac-
cording the runtimes given above (i.e., joint segmentation and propagation: 9.95 seconds,
optimized segment-wise interpolation for 0.62 seconds in case of 1063 segments). The
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Figure 4.14: Evaluation of the region merging step’s influence. Results for Ambush5 of our a) full
and b) shortened 2D-to-3D conversion algorithm. These results are based on GT values at computer-
generated scribble positions (yellow), i.e., DS T1. Front: bright, Back: dark. Original video from [27].

unoptimized 2D-to-3D conversion algorithm, i.e., the joint segmentation and propagation
and the initial segment-wise interpolation septs implemented in C++, consumes 2395.10
seconds (i.e., joint segmentation and propagation: 450.10 seconds, optimized segment-
wise interpolation for 1945 seconds in case of 1063 segments). Thus, for this video, our
optimized 2D-to-3D conversion accelerates the unoptimized one by a factor of 266.

Figure 4.16 additionally compares four implementations of the box filter, which is a
principal component of GF [59]. We list runtimes for a C++ and three CUDA implementa-
tions: (1) a not memory-optimized naive implementation (uncoalesced memory-access),
(2) an implementation that uses the GPU’s faster texture memory to achieve computational
performance gains despite the uncoalesced memory-access in x-direction, and (3) our
implementation that transposes video frames for coalesced memory-access in x-direction.
The box filter implementation that performs memory optimization via texture memory is
provided by NVIDIA Computing SDK 4.1 [108]. Since the texture memory is restricted
to reading after its initialization, its usage causes frequent data transfers between CPU
and GPU when applying multiple box filters in a row (as it is done in GF). Contrary, our
implementation is entirely performed on the GPU and has lower runtimes in Figure 4.16.

Finally, Table 4.5 lists the runtime of the entire optimized 2D-to-3D conversion algorithm
(i.e., joint segmentation and propagation, segment-wise interpolation and the optional
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Table 4.3: Computational efficiency evaluation of joint segmentation and propagation. Com-
parison of runtimes between the unoptimized C++ implementation and the optimized CUDA
implementation of the joint segmentation and propagation step. The joint segmentation and
propagation step of the unoptimized and optimized algorithm take the same input videos, user
input, disparities and parameters. The table lists the runtimes in seconds.

Video Resolution Clips Runtime, unoptimized Runtime, optimized
City 699 × 282 × 19 1 439.82 11.39

Parade 689 × 282 × 11 1 286.20 6.93
Palace 702 × 278 × 10 1 267.80 6.69
Stairs 702 × 278 × 20 1 589.30 11.73

Football 669 × 282 × 21 2 974.10 26.74
Child 600 × 338 × 21 2 530.10 27.76

Tsukuba50 640 × 480 × 17 1 728.96 15.24
Tsukuba380 640 × 480 × 18 1 705.05 15.96

Figure 4.15: Computational efficiency evaluation of segment-wise interpolation. Runtime
comparisons between a CUDA implementation of the initial segment-wise interpolation approach
(i.e., each segment is filtered in a separate step) and a CUDA implementation of the optimized
segment-wise interpolation approach (i.e., all segments are separately filtered in one filtering
step). The comparison is performed for a segmentation into 1063 and into 2295 segments.

refinement step) for 11 test videos. On average, for a video shot with a resolution of
653 × 363 pixels per frame, our optimized algorithm has a runtime of 0.99 seconds per
frame (average of Table 4.5). In this evaluation, videos that are too long to be processed on
the GPU at once are partitioned into clips (e.g., Interview is divided into six clips). In these
cases, the additionally performed feature matching leads to slightly longer runtimes.

Quantitative evaluation of optimized 2D-to-3D conversion algorithm. Since a main concern
is not only to reduce the runtime of the proposed 2D-to-3D conversion algorithm, but also
at the same time to maintain the quality of its results, the disparity videos generated with
the optimized version of the algorithm are evaluated as well. We compare the results of
our optimized conversion algorithm with reference solutions from three different test sets.
(Appendix A provides visual examples of these videos and their reference solutions.):
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Table 4.4: Computational efficiency evaluation of segment-wise interpolation. Comparison of
runtimes (in seconds) between the CUDA implementation of the initial segment-wise interpolation
approach (each segment is filtered in a separate filtering step) and the CUDA implementation of the
optimized segment-wise interpolation approach (all segments are separately filtered in one filtering
step). Note that these approaches for each video are applied on the same number of segments.

Video Resolution Clips Runtime, unoptimized Runtime, optimized
City 699 × 282 × 19 1 1.36 0.62

Parade 689 × 282 × 11 1 0.36 0.14
Palace 702 × 278 × 10 1 0.34 0.13
Stairs 702 × 278 × 20 1 0.75 0.22

Football 669 × 282 × 21 2 1.70 0.44
Child 600 × 338 × 21 2 2.15 1.06

Tsukuba50 640 × 480 × 17 1 1.11 0.27
Tsukuba380 640 × 480 × 18 1 1.12 0.36

Figure 4.16: Computational efficiency evaluation of memory optimization performed in segment-
wise interpolation. The chart lists the runtimes (in milliseconds) of different box filter imple-
mentations in CUDA. The different filter implementations were applied on an image with the
resolution of 1024× 1024 pixels. Note that GF [59], which is used in the interpolation step of
the 2D-to-3D conversion algorithm, is implemented as a series of box filters.

• Recorded stereo dataset, which consists of the five test videos that we used to evaluate
the unoptimized algorithm (Table 4.1 and Figure 4.12), i.e., City, Parade, Palace,
Stairs, Football. The reference solutions are stereo estimated [12] disparity videos.

• Long video dataset, which consists of three videos (with 21 to 101 frames) taken
from [20, 42], i.e., Child (Figure 4.17), Head, Interview. These videos are computer-
generated (Child, Head) or recorded (Interview) and provided with GT disparity and
depth maps, respectively. The depth map of Interview was recorded with a special
camera that is also able to record depth [42]. GT from [20] is only provided for a few
frames and, thus, conversion results are only evaluated at these frames.

• Tsukuba dataset, which consists of three videos that were taken from the new Tsukuba
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Table 4.5: Quantitative evaluation of optimized 2D-to-3D conversion algorithm. MSE to ref-
erence solutions and runtime (in seconds) for the optimized 2D-to-3D conversion approach
(i.e., including refinement step, excluding calculation time of OF). MSEs are multiplied by 100.

Video Resolution Clips MSE, with OF MSE, without OF Runtime
City 699 × 282 × 19 1 0.08 0.09 12.61

Parade 689 × 282 × 11 1 0.12 0.13 7.40
Palace 702 × 278 × 10 1 0.17 0.17 7.16
Stairs 702 × 278 × 20 1 0.12 0.12 12.73

Football 669 × 282 × 21 2 0.08 0.10 29.00
Child 600 × 338 × 21 2 0.07 0.07 31.46
Head 600 × 330 × 81 4 0.44 0.52 51.69

Interview 600 × 480 × 101 6 0.37 0.43 111.85
Tsukuba50 640 × 480 × 17 1 0.02 0.02 16.61
Tsukuba380 640 × 480 × 18 1 0.16 0.18 17.44
Tsukuba1 640 × 480 × 100 8 0.11 0.11 113.82

dataset [102], i.e., Tsukuba1, Tsukuba50 (Figure 4.6), Tsukuba380. These computer-
generated videos are provided with corresponding GT disparity videos.

To evaluate the quality of our results we compare them to their respective reference solutions.
We employ the same strategy as above to enable the comparison of our propagation
result with the respective reference solution, i.e., the conversion algorithm propagates
the reference solution at user-provided scribble positions instead of the disparity given
by the scribbles. In case of the recorded stereo dataset, we use the same input data,
including scribbles, as in the evaluation of the not optimized 2D-to-3D conversion algorithm
(i.e., Table 4.1). Table 4.5 lists the MSE averaged over all pixels of the respective video.
The videos were converted with the optimized 2D-to-3D conversion algorithm with and
without OF (from [110]). Figure 4.17 exemplarily shows the results for the video City (with
OF). As in the unoptimized conversion, in its optimized version only a few scribbles are
sufficient to generate temporal consistent disparity maps that are near to the reference data
(Figure 4.17, Table 4.5). When further comparing the MSEs of the optimized algorithm
(i.e., Table 4.5) with the MSEs of the unoptimized algorithm (i.e., Table 4.1), it can be seen
that both implementations of the algorithm obtain results of high conversion quality, i.e.,
results which are close to their corresponding reference solutions.

Evaluation of clip-based 2D-to-3D conversion algorithm. We further evaluate the impact of
our clip-based processing on the quality of the conversion results and the runtime. To this
end, we apply our algorithm to six videos13. For each video we perform three 2D-to-3D
conversions: (1) conversion as a whole video and (2) clip-based conversions for partitions
into two clips and (3) into three clips (Table 4.6). In all investigated videos the overall
runtime increases with the number of clips. This is caused by the additionally performed
feature matching that propagates scribble disparities to the first and last frame of each

13The videos from our long video dataset, i.e., Child, Head and Interview, and Tsukuba380 were excluded from
this experiment. Due to their memory requirements, they can only be processed in multiple clips.
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Table 4.6: Quantitative evaluation and computational efficiency evaluation of clip-based 2D-
to-3D conversion algorithm (with OF). MSE (multiplied by 100) and runtime (in seconds) for
conversion as a whole video (1C) and clip-based for partitions into two (2C) and three clips (3C).

Video MSE Runtime
1C 2C 3C 1C 2C 3C

City 0.08 0.11 0.16 12.61 13.24 14.01
Parade 0.12 0.17 0.27 7.40 9.15 10.82
Stairs 0.12 0.72 0.21 12.73 12.87 13.51
Palace 0.17 0.17 0.20 7.16 8.83 10.71

Tsukuba50 0.02 0.02 0.02 16.61 17.10 18.20
Tsukuba380 0.16 0.16 0.16 17.44 18.12 19.07

clip. Table 4.6 further indicates that our clip-based algorithm works better for computer-
generated videos than for video recordings. In case of the recorded videos City, Parade,
Stairs and Castle the MSE increases with the number of clips, while remaining unchanged
for the computer-generated videos Tsukuba50 and Tsukuba380.

4.5 Summary

This chapter has presented a semi-automatic 2D-to-3D conversion approach for dynamic 2D video
shots. Our main contribution was to adopt a segmentation algorithm for disparity propagation, which
enabled us to process video shots containing camera and object motion. The joint segmentation
and propagation approach supports multiple disparities within segments and ensures hard disparity
edges at segment borders. A subsequent step interpolates disparities within segments over time and
optionally refines the final disparity video, enforcing disparity edges to be consistent with color edges
in the input video. Quantitative evaluations have demonstrated that our proposed algorithm generates
disparity maps of high conversion quality. Our conversion-generated disparity maps capture the
structure of the corresponding 2D content, contain plausible disparities for slanted surfaces and
capture smooth disparity changes over time. Our experiments, visually and quantitatively, show that
we have outperformed a well-established semi-automatic 2D-to-3D conversion approach on a set of
recorded videos using the same user input. In this context, a key advantage of our approach was a
significant reduction of over-smoothing in our 2D-to-3D conversion results.

This chapter has further discussed an optimized implementation of the presented semi-automatic
2D-to-3D conversion algorithm. In this context, our first contribution was a significant reduction
of the runtimes while maintaining the quality of the resulting disparity videos. By implementing
computationally expensive parts of our algorithm on the GPU, we have achieved an acceleration of
the conversion algorithm by a factor of 226 for a video with the resolution of 600× 255 pixels.
As a second contribution, we have generated an optimized implementation of the underlying
segmentation algorithm [53] and an efficient method for segment-wise filtering that is based on an
existing edge-preserving filter [59]. Furthermore, we have used a simple approach for overcoming
the limitation posed by the GPU’s onboard memory. It partitions long videos into clips, which are
processed sequentially, while incorporating methods for handling borders between clips. Since it
relies on feature matching, the quality of the results depends on the quality of the matching results.
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Figure 4.17: Evaluation of optimized 2D-to-3D conversion algorithm. For a) City and b) Child:
First row: Frames of input video with scribbles in its first and last frame. Second row: Reference
solution (white: foreground, black: background). Third row: Our conversion results. Fourth row:
Corresponding error (dark small and white large errors). b) Original video from [20].



CHAPTER 5
Cost Volume Filtering for Video

Segmentation and 2D-to-3D
Conversion

5.1 Introduction

This chapter describes the second semi-automatic 2D-to-3D conversion algorithm that is proposed
in this thesis. In some similarity to our previous segmentation-based 2D-to-3D conversion
algorithm (Chapter 4) it also exploits video segmentation techniques to preserve disparity edges
at object borders. Contrary to our previous segmentation-based 2D-to-3D conversion algorithm,
which uses an automatic video segmentation technique, an interactive video object segmentation
algorithm based on cost volume filtering (CVF) is used. In this chapter, we first propose a fast
interactive video object segmentation algorithm that is able to segment a video at interactive rates
(i.e., 250 fps for frames with a resolution of 620 × 360 pixels) and then extend it to perform
2D-to-3D conversions. This extension considers special requirements of the application of 2D-to-
3D conversion (e.g., multiple smooth disparities within objects instead of fixed assignments to
fore- and background). Both algorithms (the proposed interactive object segmentation algorithm
and the proposed 2D-to-3D conversion algorithm) are embedded in an efficient optimization
framework, i.e., the cost volume filtering framework [125], that has been used to solve several
label-based optimization problems in the field of computer vision, including stereo matching, OF
estimation and image segmentation [62, 82, 125].

The interactive video object segmentation algorithm that is proposed in this thesis (Sec-
tion 5.2.1) allows users to extract objects from a video using only a few foreground scribbles.
Its main contribution is the extension of the image segmentation approach via CVF of [125] to
the temporal domain. More precisely, the initial CVF approach [125] solves the binary image
segmentation problem in three steps: (1) First, based on color models that were initialized through
foreground scribbles, Rhemann et al. generate a cost map (or in case of a video a cost volume) that

63
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contains each pixel’s probability of belonging to the foreground. (2) Smoothing the cost map with
an edge-preserving filter [59] aggregates the costs across neighboring pixels with similar colors.
(3) Finally, pixels are assigned to the fore- or background according to the smoothed costs. While
this framework enables spatially smooth pixel assignments, in its initial version it lacks temporal
aggregation of costs. When being applied to a task such as video segmentation or 2D-to-3D
video conversion, which both call for a labeling that is temporally as well as spatially smooth,
the initial CVF approach can cause flickering. We achieve temporally coherent segmentation
results by additionally aggregating the costs across consecutive frames. This is similar to [62],
where spatio-temporal filtering was used in the domains of stereo matching and OF estimation.
The video object segmentation can be further refined in a temporally coherent alpha matting
step that accounts for transparencies at object borders. More precisely, alpha matting algorithms
strive to recover an additional transparency map (denoted alpha matte) that describes the partial
transparency of a foreground object’s pixels (and the corresponding color of the foreground object).
This is of particular importance in image areas where fore- and background colors are blended
into each other (i.e., for mixed pixels). Object segmentation algorithms can not clearly assign these
image areas to either the fore- or the background by a binary decision. Thus, in these image areas,
alpha matting algorithms perform a “soft segmentation“, i.e., determine a percentage that defines
a partial coverage by the foreground and store this percentage in the mentioned transparency map.

Additionally to the image segmentation algorithm [125] mentioned above, related (interactive)
image segmentation algorithms (e.g., [4, 19, 32, 43, 97, 139]) and (interactive) video segmentation
algorithms (e.g., [4, 36, 53, 122, 160]) were already discussed in Section 3.2.2. Closely related
algorithms that focus on interactive video object segmentation include [4]. In [4], the segmentation
is based on the geodesic distance of a pixel to fore- and background scribbles. The geodesic
distance is computed as the weight of the shortest path in a cost volume that was generated from
color models. This approach requires the cost volume to be of high quality. Noise in the cost
volume can accumulate over geodesic paths and lead to errors at object borders. In contrast, our
approach smoothes the cost volume under guidance of the input video and yields spatially and
temporally coherent segmentations, in which label changes coincide with spatio-temporal edges
in the input video. Bai et al. [5] propose a framework that is able to process scenes that contain
similar colors in the fore- and the background. However, it relies on accurate manual segmentation
of keyframes, i.e., boundary-based image annotation. In contrast, the video object segmentation
algorithm that is presented in this thesis, requires sparse and less accurate user input in the form of
foreground scribbles (Section 5.2.1.1). Drawing a scribble triggers a local CVF-based optimization
process that assigns pixels in all frames of a video to either the fore- or the background. As we
have discussed in Section 3.2.2, various video object segmentation approaches rely on global
optimization (e.g., [36, 88, 160]). Although these approaches can potentially leverage the totality
of video pixels in support of computing a segmentation, processing them at the same time leads
to high computational cost. Wang et al. [160] reduce the runtime of their segmentation algorithm
by jointly processing groups of pixels. However, the requisite pre-processing step is itself costly
(e.g., video with 720 × 480 × 175 pixels: 39 minutes [160]). In contrast, our local approach
achieves runtimes of 250 fps (620× 360 pixels).

As mentioned above, our interactive video object segmentation approach is extended to
perform 2D-to-3D conversions. It considers special requirements of this application, including
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the extension to multiple scribble labels (i.e., multiple disparities instead of only fore- and back-
ground) and smooth disparity variations within objects that are obtained with a disparity blending
approach. The main contribution of our 2D-to-3D conversion algorithm is the introduction of
temporal disparity change models, which interpolate disparities over time. These models allow
us not only to capture temporal disparity changes, but also to generate perceptually coherent
disparity maps with respect to object motion. In other words, when capturing the disparity change
of objects that move towards or farther away from the camera, our algorithm ensures that the
disparities of these moving objects harmonize with those of nearby objects. More precisely,
the temporal interpolation of the moving object’s disparities is performed in accordance with
occlusions between this object and nearby objects. Thus, by addressing the problem of perceptual
coherence in the context of motion-caused occlusions, our 2D-to-3D conversion algorithm takes
a step towards the generation of perceptually coherent disparity maps.

While the importance of enabling temporal disparity changes was already stressed by a few
existing semi-automatic 2D-to-3D conversion algorithms (e.g., [56, 117]), we are not aware of
any semi-automatic 2D-to-3D conversion algorithm that also considers the problem of generating
perceptually coherent disparity maps. Liao et al.’s [92] automatic 2D-to-3D conversion algorithm
uses automatically estimated disparities, but provides the option to combine them with user-given
depth order cues for complex scenes. The algorithm ensures perceptual coherence in reference to
a single, prior extracted moving foreground object, but could principally be extended to consider
multiple objects similar to our algorithm. It propagates disparities with a global optimization that
incorporates inequality constraints between selected pairs of neighboring pixels. These inequality
constraints restrict the disparity of all pixels that are adjacent to the foreground object to be
lower than the disparity of the foreground object. Liao et al. [92] further analyze object motion
to detect expanding or shrinking objects and infer a disparity change depending on the object
size. Contrary to [92], we aim for disparity maps that are perceptually coherent with respect to
multiple moving objects. We achieve this by inferring a rough depth order [112, 154] between
multiple objects which is then combined with the user-given disparities.

In Section 5.2.1, we discuss our CVF-based interactive video object segmentation algorithm.
Our CVF-based 2D-to-3D video conversion algorithm is discussed in Section 5.2.2. In Sec-
tion 5.3.1 and Section 5.3.2, we test our algorithms on various videos and compare them to
previous algorithms. Evaluations and experiments of the video object segmentation algorithm
(Section 5.3.1) show that it outperforms previous video object segmentation algorithms with simi-
lar runtime capabilities as ours [4, 125]. Experimental evaluations with our 2D-to-3D conversion
algorithm (Section 5.3.2) demonstrate that our CVF-based 2D-to-3D conversion algorithm is
competitive when being compared to related 2D-to-3D conversion approaches [56, 118].

5.2 Proposed Algorithm

This section first discusses our video object segmentation algorithm (Section 5.2.1) and the CVF
framework for videos (with temporal cost aggregation) that uses two fixed labels, i.e., fore- and
background. Then, the 2D-to-3D conversion algorithm (Section 5.2.2) is described. For this
application we use a more general CVF framework that considers multiple labels (i.e., disparities).
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Figure 5.1: Illustration of progressive labeling (after [97]). a) First foreground scribble: The
foreground model (Hf ) is based on the marked pixels (red scribble). The background model (Hb)
is based on randomly chosen pixels (blue dots). b) Obtained segmentation: Foreground (F ) white,
background (B) black. c) Second scribble: Scribble (S). Hf is based on newly marked pixels (B∩
S) and local foreground pixels (R ∩ F ) in a bounding box (R).

5.2.1 Interactive Video Object Segmentation via Cost Volume Filtering

The proposed video object segmentation and matting framework comprises three components.
First, to enable a user to extract objects from a video, a scribble-based user interface is imple-
mented (Section 5.2.1.1). Users draw on frames to indicate that the marked pixels belong to the
foreground (or background). After drawing a scribble, a fast optimization (Section 5.2.1.2) based
on spatio-temporal CVF is triggered. The filtered cost volume is then thresholded to get the binary
segmentation, i.e., an assignment of each pixel to one of the labels L = (F,B), foreground F or
background B. Finally, an optional matting step can account for mixed pixels at object borders.
Below, these components are discussed in more detail.

5.2.1.1 Scribble-based User Interface

Aiming for little user interaction, we offer a scribble-based user interface that supports progressive
editing. With this user interface, the user draws scribbles on an arbitrary frame to indicate which
pixels belong to the foreground object that should be extracted from a video. This annotation
initializes the segmentation process, i.e., color1 models are built from the user-marked pixels.
These color models, i.e., color histograms that sum up to one, are then used as data cost in our
segmentation algorithm. This user interface follows three basic concepts: foreground selection,
progressive labeling and local editing. These concepts are borrowed from [97] and are in this
thesis transferred to the temporal domain. Below, they are discussed in more detail.

Foreground selection. In general, only foreground scribbles are necessary to extract a fore-
ground object from a video.2 This is more intuitive and reduces the amount of interaction
(i.e., fewer scribbles, no need for the user to change the scribble label). Given a foreground
scribble, the foreground color histogram Hf is built from the marked pixels (Figure 5.1 a),
red scribble). The background color histogram Hb is built from random samples (i.e., 1200
pixels) from the same frame (Figure 5.1 a), blue dots). Our algorithm automatically and
randomly choses these background samples from all pixels in the same frame that are not

1Other features (e.g., motion vectors [4] or texture [79]) could be additionally used.
2It is possible to add background scribbles and reversing the roles of fore- and background in the algorithm.
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Figure 5.2: Effect of local editing. a) Frame and foreground scribble (red). b)-c) Binary
segmentation that accepts b) all and c) only local changes. Foreground: white, background: black.

labeled as foreground pixels. Although they might not all be true background samples, the
model can be further refined with subsequent user interactions.

Progressive labeling. Based on the foreground and the background histogram a binary segmenta-
tion is generated (Figure 5.1 b)). This segmentation, with foreground F and background B,
can be expanded by adding new scribbles in any frame of the video (Figure 5.1 c)). When
a new scribble S is drawn, the histograms are updated. Hf is re-built from the newly
marked foreground pixels B ∩ S and local foreground pixels, which are available from
previous interactions. Given a bounding box3 R around B ∩ S, these local foreground
pixels are defined as R ∩ F . To avoid that the local foreground pixels’ colors are dominant
in Hf , we lower their contribution in Hf based on their spatial distance to S. Next we
update the background histogram Hb. This is done by removing samples from Hb that
were assigned to F in the previous interaction (e.g., Figure 5.1 a), background sample in
green area belongs to F in b) and, thus, has to be replaced). These samples are replaced by
randomly chosen samples from B. The progressive labeling preserves the segmentation
from previous interactions by only expanding either the foreground or the background.
Specifically, when adding a foreground scribble, the previous result is updated by switching
only labels of background pixels.

Local editing. Based on the observation that users often want to change the segmentation only
locally, we try to avoid unwanted changes far away from local user input. We implement
the concept of local editing in two ways: Firstly, we build the foreground color histograms
locally (as discussed above). We do this because color re-occurs quite frequently in a video
and, hence, global color models would be ambiguous. In contrast, the color information is
more unique in a small spatio-temporal window. Secondly, a scribble can only affect the
segmentation locally. In particular, if a scribble generates a segmentation with regions that
are spatio-temporally disconnected from the scribble (26-connected neighborhood), we
remove the disconnected regions. This is illustrated in Figure 5.2, where the user marks the
dog’s head with a foreground scribble (Figure 5.2 a)). Due to color ambiguities, regions
of the background are erroneously assigned to the foreground (Figure 5.2 b)). However,
removing regions from the resulting binary segmentation that are not spatio-temporally
connected to the scribble, leads to a better result (Figure 5.2 c)).

3We additionally expand the bounding box by 40 pixels in the spatial and two frames in the temporal domain.



68 Chapter 5. Cost Volume Filtering for Video Segmentation and 2D-to-3D Conversion

Figure 5.3: Temporally coherent cost volume filtering. a) Frame from guidance video Who
with foreground scribble (red). b) Corresponding xy-slice from cost volume and c) from spatio-
temporally filtered cost volume (high probability: bright, low probability: dark). d) yt-slice
at position of the green arrow from a), e) from per-frame filtered cost volume and f) from
spatio-temporally filtered cost volume. Copyright of original video: BBC Worldwide Ltd.

5.2.1.2 Spatio-temporal Video Segmentation

Given the foreground color model Hf and the background color model Hb, we assign all pixels
of a video to either the fore- or the background. The assignment to the labels should ideally be
spatio-temporally coherent and fast. To achieve these goals, we follow three steps [125]: (1) build
and (2) filter a cost volume and (3) assign labels according to the cost volume.

Cost volume generation. In the context of video object segmentation, a spatio-temporal cost
volumeP (Figure 5.3 b), xy-slice for fixed t) contains the probabilities (or costs4) pi ∈ [0, 1]
that a pixel i = (x, y, t) belongs to the foreground (or the background, i.e., 1− pi). This
probability is based on the comparison of the frequencies of i’s bin in Hf and Hb:

pi =
Hf (i)

(Hf (i) +Hb(i))
. (5.1)

Previously marked pixels have already been assigned by the user and are accordingly set
to 0 or 1 to indicate the assignment to the foreground or the background, respectively.
The result of this procedure — the three-dimensional (x, y, t) cost volume P — is itself
a segmentation cue (e.g., Figure 5.3 b)). However, naively using this cost volume for
extracting the foreground (P > 0.5) would result in a binary segmentation that is spatially
and temporally not coherent. These incoherencies are primarily caused by color ambiguities,
missing colors in the color models or noise (e.g., Figure 5.3 b)). To account for these
problems, a smoothness assumption is commonly implemented to aggregate probabilities
(or data costs) from neighboring pixels that are similar in terms of color.

Spatio-temporal filtering. For smoothing we use an efficient, edge-preserving filtering tech-
nique to locally smooth the costs of similar neighbor pixels. When filtering the cost volume
in a frame-to-frame manner [125], holes are smoothed in the individual frames — the
segmentation is spatially more coherent — and edges in the cost volume are aligned with
spatial edges in the input video (Figure 5.3 c)). However, filtering frames independently
from each other does not prevent flickering (Figure 5.3 d)-f)). To obtain a spatially and

4The probability pi ∈ [0, 1] in the cost volume corresponds to the cost (1− pi) ∈ [0, 1].
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Figure 5.4: Spatio-temporal filter kernel. a) Frame from guidance video Girl. b) Corresponding
xy-slice from P (high pi: bright, low pi: dark). d)-e) Zoom-in on the marked windows and at
temporally neighboring positions. c) Corresponding filter weights (rs = 15, rt = 3, ε = 0.002).
Bright: high weights, dark: low weights. Copyright of original video: Universal Pictures.

temporally coherent result, we use the temporally extended version of GF [59] that was
discussed in Section 4.2.3. Its three-dimensional filter kernel additionally smoothes tempo-
rally close-by pixels of the cost volume which are similar (color) in a guidance video (the
input video I). This means cost-edges that coincide with spatio-temporal video edges are
preserved. The described behavior is realized by a weighted average, i.e.,

p′i =
∑
j

Wi,j(I)pj , (5.2)

whose weights are given by:

Wi,j =
1

|ω|2
∑

k:(i,j)∈ωk

(1 + (Ii − µk)T (Σk + εU)−1(Ij − µk)). (5.3)

Here, ωk is a spatio-temporal window, with spatial radius rs and temporal radius rt, that is
centered around a pixel k. i and j are pixels in ωk. |ω| is the number of pixels in ωk. Ii and
Ij are color vectors (3× 1). µk (3× 1) is the mean color vector in ωk and Σk (3× 3) is the
covariance matrix. U is the 3× 3 identity matrix. p′ is the filtered probability of pixel i
and belongs to the filtered cost volume P ′. The filter’s sensitivity can be controlled by ε (a
higher ε leads to smoother videos). Figure 5.4 visualizes a filter kernel for guided video
filtering. It can be seen that pixels that exhibit a similar color as the central pixel have high
weights. Pixels on the other side of the spatio-temporal edge have low weights.

The spatio-temporal GF can be, analogously to its spatial version [59], implemented in
linear time [62]. Instead of computing the weights explicitly., i.e., using Equation (5.3),
their implicit computation can be performed according to the following linear equations:

ak = (Σk + εU)−1
( 1

|ω|
∑
i∈ωk

Iipi − µkpk
)
, (5.4)

bk = pk + aTk µk, (5.5)

p′i = ai
T Ii + bi. (5.6)

Here, the filtered cost volume P ′ contains the filtered probabilities p′i for each pixel i. pk is
the mean of P in ωk. ai (3×1) and bi are the means of the linear coefficients ak (3×1) and
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bk in ωi, i.e., ai = 1
|ω|
∑
k∈ωi

ak and bi = 1
|ω|
∑
k∈ωi

bk. The summations in the implicit weight

computation, i.e., in Equations (5.4), (5.5) and (5.6), can be implemented as box filters.
When implementing these box filters using the sliding window technique [35], the filter
output can be computed in O(N) with N being the number of pixels in a video. When
filtering the cost volume, we additionally experimented with a temporal weighting [126]
of a kernel’s time slices, meaning that we give higher weights to frames near the kernel’s
central frame than to frames at window borders. In particular, in the summations in
Equations (5.4), (5.5) and (5.6), the regular box filter was replaced by a box filter whose
kernel’s time slices are weighted as described above.

Fore- and background assignment. Finally, we apply a threshold (0.5) to the filtered cost vol-
ume P ′. This yields an assignment of each pixel to either the fore- F or the background B:

S =

{
F if P ′ > 0.5,

B if P ′ ≤ 0.5.
(5.7)

To obtain a soft segmentation, which accounts for mixed pixels at object borders, an
additional, temporally coherent matting step can be performed. It has been shown that
the spatial GF approximates an alpha matting algorithm [59], when being applied to
binary segmentations. Thus, we apply (analogously to Equations (5.2) - (5.6)) the spatio-
temporal GF to the previously obtained binary video segmentation S . More precisely, the
thresholded cost volume (also denoted binary segmentation map), in which foreground
pixels are assigned to one and background pixels are assigned to zero, is filtered with
guidance of the input video I . This leads to temporally smooth matting results.

5.2.2 Semi-automatic 2D-to-3D Conversion via Cost Volume Filtering

In this section we extend our video object segmentation algorithm to perform 2D-to-3D conver-
sions. Figure 5.5 gives an overview of the conversion algorithm’s main components. It comprises
six components, which transform the video object segmentation algorithm to a 2D-to-3D con-
version algorithm. Compared to object segmentation, 2D-to-3D conversion typically requires
(1) multiple scribble labels (i.e., multiple disparities). The increased number of labels might
come with a larger ambiguity between their color models, which is addressed by (2) an additional
spatio-temporal closeness constraint and (3) a 3D connectivity constraint. We further investigate
an extension of the CVF framework [125] by performing motion guided filtering to obtain (4) im-
proved temporal coherence in our conversion results. Finally, we address the cardboard effect by
introducing (5) smooth label changes within objects using a simple disparity blending approach.
The focus of our presented 2D-to-3D conversion algorithm is to not only obtain temporally
coherent, but also perceptually coherent disparity maps. To this end, we introduce (6) temporal
disparity change models for the user-drawn scribbles that interpolate disparities in accordance
with observed occlusions from nearby moving objects. In the following, we first discuss the
basic 2D-to-3D conversion algorithm (Section 5.2.2.1), which includes components (1) to (5)
(i.e., MS, STC, CON, CVF and disparity assignment in Figure 5.5). Then, we present component
(6) (i.e., DC in Figure 5.5) in Section 5.2.2.2. Appendix B.1 further summarizes components (1)
to (6) in the form of their program flow.
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Figure 5.5: Overview of semi-automatic 2D-to-3D conversion algorithm. Generation of cost
volume P from multiple scribbles (MS). Spatio-temporal closeness constraint (STC). Cost volume
filtering (CVF) without or with motion guided filtering (+TC) to obtain P ′. Temporal disparity
change models (DC) that correct naive interpolations (-n) by guided interpolations (-g). They can
alternatively be applied with respect to time (-tM) or segment size and motion (-sM). 3D connec-
tivity constraint (CON). Final disparity assignment using a winner-takes-all (WTA) or a disparity
blending (DB) scheme. Dashed components can be disabled.

5.2.2.1 Basic 2D-to-3D conversion algorithm

The proposed 2D-to-3D conversion algorithm uses a scribble-based user interface similarly to the
user interface used in our object segmentation algorithm (Section 5.2.1.1). In case of 2D-to-3D
conversion users provide initial disparities in the first (and last) frame of a video shot by drawing
scribbles (Figure 5.6 a)). As in the user interface described in Section 4.2.1, a scribble’s hue is
used to assign a disparity to the pixels covered by the scribble. For the algorithm discussed in
this section, a single scribble is used to indicate a single disparity. The 2D-to-3D conversion
is triggered by the user, when she or he is satisfied with the annotations. Below, we describe
the basic components of the 2D-to-3D conversion algorithm, i.e., all components except for the
temporal disparity change models that are discussed in a separate section (Section 5.2.2.2).

Multiple scribbles (MS). User-provided scribbles L = (S1, ..., SL) indicate corresponding
user-selected disparities D = (D1, ..., DL) (e.g., Figure 5.6). Since we aim to capture
temporal disparity changes, users can indicate them by performing appropriate scribble
annotations in the first and the last frame of a video. Based on the idea that scribbles
which are contained in the same spatio-temporal segment belong to the same object, we use
segmentation information and color comparisons to group and match scribbles. For that
purpose, we use a motion segmentation algorithm [48] (applied without the in [48] given
depth information as additional input).5 The used motion segmentation algorithm [48]
leverages long-term motion information, i.e., dense point trajectories from an OF based
tracker [48, 82, 131, 145], that can also be used in later components of our 2D-to-3D
conversion algorithm (e.g., +TC in Figure 5.5). Since the resulting segments are used to
identify matching scribble pairs, and, hence, should not partition a single scribble into
multiple segments, we initially merge all trajectories that belong to the same scribble Sl
(l ∈ [1, L]) to the same segment and then proceed with the motion segmentation algorithm.
The result of this process is a segmentation in which each scribble belongs to exactly one
segment. The segmentation might also contain segments without any or with more than
one scribble. First, we group scribbles that indicate the same disparity and are in the same

5It should be noted that this is different from the segmentation algorithm described in Section 5.2.1.
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Figure 5.6: Cost volume with multiple scribble labels. a) First frame (t = 1) of input video
with scribble-based annotation, i.e., three user-drawn disparity scribbles. Scribble hues encode
disparities (i.e., the redder a scribble the closer it is to the camera). b)-d) Corresponding filtered
cost volume slices P ′(., ., 1, l) for each scribble Ṡl. Specifically, b), c) and d) correspond to
the pink, red and yellow scribble, respectively (dark: low pi, bright: high pi). e) Accordingly
obtained disparity map (dark background, bright foreground). Original video from [27].

frame and segment. Then, we match scribbles that are located in the same spatio-temporal
segment, but in different frames (i.e., the first and last frame). The resulting scribble pairs
can indicate different disparities of one and the same object at different points in time.
In the following, each scribble pair or set of grouped scribbles (that is not contained in a
scribble pair) is referred to as Ṡl and the set of all Ṡl as L̇. Analogue to D, each Ṡl has
disparities that are referred to as Ḋl ∈ Ḋ. All scribbles Sl that belong to a set of grouped
scribble or scribble pair Ṡl are processed jointly.

The extension of [22] to multiple labels is straightforward. As in [62, 125] a more general
CVF framework is used. Specifically, a four-dimensional cost volume P (x, y, t, l) is
built, in which the additional dimension, i.e., l, corresponds to the set of scribbles L̇ =
(Ṡ1, ..., ṠL) with their corresponding disparities Ḋ = (Ḋ1, ..., ḊL) (Figure 5.6). Analog to
the case of segmentation (Section 5.2.1.2), for each scribble Ṡl a color model Hf,l is built
from the marked pixels in the 2D video. The color model Hb,l for Ṡl captures the pixel
colors from the remaining scribbles, i.e., L̇ \ Ṡl. The probability pi,l for each pixel i =
(x, y, t) and label l is computed according to Equation (5.1). The smoothness assumption
(in component CVF) is incorporated by applying the temporally extended version of GF on
each cost volume slice P (., ., t, l) for a fixed l analogously to Equations (5.2) - (5.6). Finally
(in disparity assignment component), each pixel i can be assigned to a disparity di, i.e., a
disparity Ḋl ∈ Ḋ from a single scribble Ṡl ∈ L̇, by employing a winner-takes-all (WTA)
strategy on the filtered cost volume P ′ and its probabilities p′i,l:

di = arg max
Ṡl∈L̇,Ḋl∈Ḋ

p′i,l, (5.8)

where at the current stage of the algorithm the disparity given in the first frame is used for
scribble pairs. The current result (Figure 5.6 e)) equals an interactive multi-label segmenta-
tionR in which each segment is additionally assigned to one of the fixed disparities Ḋl.

Spatio-temporal closeness constraint (STC). As mentioned in Section 5.2.1.1, with scribble-
based annotations users typically want to indicate local assignments rather than global
ones. This is also true in our application of 2D-to-3D conversion and may be compli-
cated by color ambiguities between objects at different disparities (e.g., Figure 5.7 a),
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bears). Thus, we constrain a scribble’s influence to each pixel in the video by their spatio-
temporal closeness. In some similarity to [163], our STC is implemented in form of
a confidence weight pclose,l ∈]0, 1] that is computed per scribble Ṡl and for each pixel.
This confidence weight is computed from a (truncated)6 distance transform [17] (using
Chessboard distance) Ml of Ṡl and is applied to the cost volume before filtering its proba-
bilities (i.e., P (., ., t, l) := P (., ., t, l)pclose,l). Figure 5.7 exemplarily shows the effect in a
conversion result and a cost volume when applying STC. The changes in the cost volume
can be observed best in the zoom-ins on P ′(., ., t, 1) and P ′(., ., t, 2) for the bear on the left
(marked yellow). After applying STC (Figure 5.7 b), P ′(., ., t, 1)), the red scribble Ṡ1 has
lower probabilities than before (Figure 5.7 a), P ′(., ., t, 1)). This means, in this example,
pclose,l reduced the probability of erroneously assigning the distant bear on the left to
disparities (from Ṡ1) that were meant only for the closer bear on the right. As a result,
erroneous disparity assignments in the conversion results (Figure 5.7 a)) that were caused
by color ambiguities in the 2D image are reduced after applying STC (Figure 5.7 b)).

While the computation of pclose,l is straightforward for a single frame that contains user-
drawn scribbles (e.g., first frame), remaining frames require the additional step of scribble
tracking. This is done by following OF vectors (trajectories from MS) at the pixels that
are marked by the scribble throughout the video. While this tracking strategy might be
less accurate than, e.g., object tracking, it is typically more efficient and has shown to be
sufficient when being used in 2D-to-3D conversion algorithms (e.g., [117]). After scribble
tracking, Ml and pclose,l are computed based on the tracked scribbles Ṡl and subsequently
applied to the cost volume slice P (., ., t, l) of the current frame t, i.e., P (., ., t, l) :=
P (., ., t, l)pclose,l. The result of STC is an updated P that can be smoothed and used to
obtain a differentR and disparity map than when only using MS (Figure 5.5).

Improved temporal coherence (+TC). In our object segmentation algorithm and in [62], the
smoothness assumption is implemented as a spatio-temporal filtering step that smoothes
the cost volume P under guidance of the input video I to obtain P ′. The filtering is
performed within a spatio-temporal filter window of fixed size (i.e., rs and rt) and, thus, uses
motion between frames only implicitly. While this local approximation of the smoothness
assumption and the implicit usage of motion is sufficient for most scenes, it is less robust
for scenes that contain fast moving objects (e.g., Figure 5.8 a), motion between frames up to
100 pixels). If the movement of an object exceeds the size of the filter window7, the filtering
step does not include pixels of the same object from different frames (e.g., Figure 5.8 b),
bottom). Thus, the object is filtered independently for each frame, leading to reduced
temporal coherence and possibly to erroneous results (e.g., Figure 5.8 b), top).

We address this issue by incorporating motion in the filtering process, i.e., allowing the filter

6In principle, the truncation value tclose (in pixels) can regulate the STC’s influence on the result. Instead of using
a single fixed tclose for all scribbles, it is also possible to choose a tclose for each scribble individually. Although it is
possible to put effort in optimizing tclose, for the sake of minimal user input, we use a single tclose that is set to the
maximal possible value (i.e., frame diagonal) for all scribbles, except when we explicitly mention otherwise.

7It is worth to note that the choice of larger filter windows can solve the problem described above to some extent.
However, since color might re-occur frequently in a video or image, larger windows also increase the probability of
color ambiguities within a filter window and, hence, unwanted aggregations of probabilities.
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Figure 5.7: Effect of spatio-temporal closeness constraint and 3D connectivity constraint. Input
frame t with scribbles including the red scribble Ṡ1 (l = 1) and the violet scribble Ṡ2 (l = 2).
Our conversion-generated disparity maps (bottom): Bright fore- and dark background. Zoom-ins
on the filtered cost volume slices P ′(., ., t, l) in the yellow marked areas for Ṡ1 and Ṡ2. For better
visualization of the effect caused by b) STC and c) the additionally applied CON over a) MS, P ′

is normalized to sum up to the value of 1 across l. In a) P ′(., ., t, 1) contains higher probabilities
(is brighter) than in b) and c). Copyright of original video: Discovery Communications.

window to adjust its spatial position between frames according to the motion in a video
(e.g., Figure 5.8 c), bottom). For scenes with fast motion, the maintained temporal support
from neighboring frames can lead to temporally more coherent results (e.g., Figure 5.8 c),
top). We implement the smoothness assumption similar to [82], i.e., based on the same
idea, but using a different filter operation. More precicely, we modify the temporal box
filter that is used in the implicit weight computation of GF [59]. In our motion guided
filtering it is applied along OF trajectories [82, 131, 145] (i.e., trajectories from MS).
Figure 5.9 illustrates our filtering process. While the horizontal (Figure 5.9 a)) and vertical
(Figure 5.9 b)) filtering steps of the motion guided box filter equal the respective steps of
the common GF, the temporal box filter is applied differently (Figure 5.9 c)). Instead of
computing the average of constant spatial pixel positions in different frames, the temporal
average is built from pixels that belong to the same trajectory. It is worth to note that a
temporal filtering step starts and ends with a certain trajectory. Motion guided filtering can
be applied instead of the common GF that is used in CVF (Figure 5.5).

3D connectivity constraint (CON). We (optionally) enforce that disparity assignments and
their corresponding user-provided scribbles are spatio-temporally connected in 3D to avoid
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Figure 5.8: Improved temporal coherence. Top: a) Input video with disparity scribbles (disparity
is encoded by hue). 2D-to-3D conversion result without b) and with c) including motion in the
filtering process (front: bright, back: dark). Zoom-ins highlight areas where c) has a better result
than b). Below: Filter weights (with rt = 1, rs = 9, ε = 0.0016) for marked center pixels within
areas highlighted above (high weight: bright, low weight: dark). In b) the support of neighboring
frames is lost. In c) the filter window is adjusted according to motion. Original video from [27].

unwanted changes in areas not connected to the user input. This connectivity constraint
operates on the filtered cost volume P ′ and its current WTA disparity map (i.e., the pixel
disparities di obtained after applying WTA at this stage of the algorithm). Essentially, it
reduces filtered probabilities p′i,l in P ′ if they result in a WTA disparity map in which i’s
disparity (e.g., Ḋl) is not connected to its corresponding scribble (e.g., Ṡl). We consider
a pixel i in a frame connected to a particular scribble (e.g., Ṡl), if the frame contains a
connectivity path (8-connected neighborhood) that connects all pixels, including i, with
the same disparity (e.g., di = Ḋl from Ṡl) and the scribble (e.g., Ṡl or tracked pixels
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Figure 5.9: Motion guided filtering. The spatio-temporal box filter that is used in GF [59]
is separable and, thus, can be implemented as three 1D filters that use the sliding window
technique [35]. The a) vertical and b) horizontal 1D filtering steps of the common spatio-temporal
box filter equal the respective steps of the motion guided filtering (red arrows in a) and b)). The
c) temporal 1D filtering step varies. While the common version filters straight through a video,
its motion guided version filters along motion vectors (red arrows in c)), i.e., trajectories [82].

from Ṡl). Inspired by a similar formulation in [14], a connectivity path consists of pixels
that either are assigned (i) to the same (e.g., di = Ḋl from Ṡl) or (ii) to a larger disparity
(e.g,., di > Ḋl). The reason for condition (ii) is to consider the common case that a
connected object in the background is occluded by foreground objects. We implement
CON by consecutively applying it on each scribble Ṡl. Due to condition (ii) scribbles
Ṡl with larger disparities Ḋl are processed first to exclude their invalid assignments from
subsequent computations. We reduce p′i,l of disconnected pixels i that violate CON by
an appropriate factor to reach a value close to zero. The result of CON is an updated P ′,
which can be processed further (Figure 5.5). When recomputing the disparity map from
P ′, pixels might be assigned to a different disparity than before.

Figure 5.7 illustrates the effect of CON by showing a conversion-generated disparity map
with (Figure 5.7 c)) and without (Figure 5.7 b)) applying CON. For the yellow marked areas,
zoom-ins in the cost volume slices P ′(., ., t, l) for the scribbles Ṡ1 (red) and Ṡ2 (violet)
are shown. Since there is no connectivity path that connects Ṡ1 in the disparity map in
Figure 5.7 b) to the left bear, CON reduces the probability that this bear is assigned to Ṡ1’s
disparity (Figure 5.7 c), P (., ., t, 1)). As a result, erroneous assignments in the disparity
maps in Figure 5.7 b) that are not connected to Ṡ1 are removed in Figure 5.7 c).

Disparity blending (DB). Since objects might be rounded or slanted, they can exhibit multiple
disparities that blend into each other. We support this case by (optionally) substituting the
WTA scheme with a simple blending approach (i.e., disparity blending approach) similar
to [170]. Specifically, a final disparity di for a pixel i is assigned to a weighted average of
the scribble disparities Ḋl derived from the filtered probabilities p′i,l according to:

di =

∑
l p
′
i,lḊl∑

l p
′
i,l

. (5.9)
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Figure 5.10: Smooth disparity changes. a) Original image b) with disparity scribbles (the bluer
a scribble the larger its disparity). 2D-to-3D conversion result with c) WTA and d) with DB
(n = 2). Foreground: bright, background: dark. DB causes smoother disparity transitions than
WTA and maintains hard disparity edges near object borders that exhibit different colors.

Here, multiple disparities Ḋl with high p′i,l can influence the final disparity di of a pixel i,
while disparities Ḋl with low p′i,l hardly contribute to di. We further restrict this averaging
to the disparities Ḋl with the n highest pi,l for each pixel i. An example of a disparity map
that was computed using DB (n = 2), compared to a disparity map that was generated with
the WTA scheme, is shown in Figure 5.10 d) and c), respectively. It can be seen that the
blending approach generates a smoother disparity map than the WTA scheme.

5.2.2.2 Temporal disparity change models

To capture motion towards or away from the camera in our 2D-to-3D conversion results, we
introduce temporal disparity change models for the user-given scribble pairs. Specifically, for
each scribble pair a disparity change model (DC) has to specify an interpolation between its
disparity given in the first and its disparity given in the last frame of the video (Figure 5.5). For
a scribble pair Ṡl = {Sl, Sk} with disparities Ḋl = {Dl, Dk}, a DC specifies the interpolation
between Dl and Dk. Naively, this interpolation could be performed linearly according to the
closeness of the regarded frame to the first and the last frame. While this solution might work
in some cases, it has a major drawback – the resulting disparity maps might be perceptually
incoherent. Figure 5.11 shows a failure case for such a naive interpolation. In this example, a
small dragon moves from behind the large dragon’s wing to the front, but is assigned to a disparity
that still places it behind the wing. We address this issue by performing the temporal disparity
interpolation in accordance with observed occlusions that were caused by nearby objects. The
underlying basic idea is that, if an object A (e.g., small dragon in Figure 5.11) moves in front of
another object B (e.g., large dragon’s wing in Figure 5.11) in frame t – i.e., if A occludes B in
frame t – we can conclude that in t A has a larger disparity than B. Thus, when interpolating A’s
disparity over time it should exceed B’s disparity in frame t, i.e., should be restricted by B’s
disparity (as a lower boundary) in frame t. We implement this idea by, first, determining a rough
depth order in each frame according to the motion observed in the video. Then, this rough depth
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Figure 5.11: Temporal disparity change models. First row: Input video with color-coded disparity
scribbles. The small dragon is annotated with a yellow scribble in the first and a blue scribble in
the last frame to indicate a temporal disparity change. Second to fifth row: 2D-to-3D conversion
results using different models, i.e., naive linear disparity interpolations (second and third row)
and our depth order guided interpolations (fourth and fifth row). The interpolations can be
applied with respect to time (-tM) and with respect to segment size and motion (-sM). The naive
interpolations are perceptually incoherent (i.e., red arrow). Original video from [27].

order is used to define disparity restrictions, which are, finally, incorporated in the depth order
guided disparity interpolation. These steps rely on motion estimated from the input video, the
filtered cost volume, i.e., P ′, and intermediate results that can be derived from it (Figure 5.5).

Rough depth order. First, a rough depth order between segments is determined for each frame.
We use segments that are derived by interpreting the current WTA result as a multi-label seg-
mentation, i.e.,R. A segment Rl ∈ R in frame t belongs to exactly one scribble (pair) Ṡl.
We collect depth order cues between pairs of segments in each frame (Figure 5.12 b)).
Similar to [112] we detect (dis)occlusions in videos by checking the consistency of the fore-
and backward OF in conjunction with corresponding segment affiliations. More precisely,
according to [112] a (dis)occlusion can be detected by identifying two forward (or two
backward) motion vectors from t− 1 (or t+ 1) that converge on the same pixel in t. By
checking the segment affiliations of the three involved pixels (i.e., two pixels from the
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Figure 5.12: Disparity restriction example. a) Intermediate input frame from example in Fig-
ure 5.11. b) Corresponding multi-label segmentation R: Segment colors correspond to scribble
colors in the first frame in Figure 5.11. Black arrows visualize depth order cues, i.e., segment at the
arrow’s shaft occludes segment at its pointy end. c) DAG: Node colors correspond to segment col-
ors. Directed edges (black) constitute an occlusion relation, i.e., parent node is occluded by child
node. The numbers in the nodes are their depth level, i.e., λ(R l , t). The artificial root node (gray)
and its gray edges were added to determine λ(R l , t). The minimum restriction rmin = 144 of
the yellow node is based on the light blue node. Original video from [27].

neighboring frame and one pixel in the regarded frame t) the (dis)occluding segment can
be identified and recorded. For each frame, these depth cues are stored in a directed acyclic
graph (DAG) [112,154]. The nodes of this DAG correspond to segments Rl ∈ R (e.g., Fig-
ure 5.12 b) and c)). Directed edges el,k between nodes, e.g.,Rl andRk, record an occlusion
relation between them. In this connection, child nodes are closer to the camera than their
parent nodes (e.g., dragon with yellow and wing with light blue node in Figure 5.12 b) and
c)). When adding a depth ordering cue to the DAG, a depth-first-search [148] is triggered
to identify cycles. In case of a cycle or conflicting pairwise occlusion cues for a segment,
only the more frequent depth order cue is used [154].8

The global relative depth order for a frame t is captured by the hierarchy level (or depth
level) of each node in the DAG with respect to an artificial root node (Figure 5.12 c), gray
node). This root node is connected to all other nodes by a directed edge that starts at the
root node. The maximum number of nodes that have to be passed to reach Rl from the root
node [9] is the depth level λ(Rl, t) of Rl (e.g., Figure 5.12 c), numbers in nodes). Hence,
the larger the depth level of a segment (node), the closer it is to the camera.

Disparity restrictions. Given the DAG for a frame t, its depth levels λ for segments R l and the
user-provided disparity annotations Ḋ l , we define disparity restrictions that guide the tem-
poral disparity interpolation. As stated above, we assume that only scribble pairs indicate a
change in disparity over time. Scribbles without annotations in both the first and the last
frame are associated with their fixed user-assigned disparities within the entire video. These
fixed disparities can be exploited when deriving a scribble pair’s disparity restrictions,
i.e., a range [rmin (R l , t) , rmax (R l , t)] that defines a minimal and maximal allowed
disparity that can be taken on by a specific scribble pair Ṡ l (and corresponding segment R l)
in frame t. The restrictions for the minimal rmin (R l , t) and maximal rmax (R l , t) dis-
parity are determined in ascending order of λ, i.e., restrictions of parent nodes (background)

8In principle, for segments not corresponding to scribble pairs, their given disparities could also resolve conflicts.
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are computed before restrictions of their child nodes (foreground), as following:

rmax(Rl, t) = min
Rk∈c(Rl,t)


Ḋk − |λ(Rl, t)− λ(Rk, t)| if Ḋk fixed,
Ḋc(Rk,t) − |λ(Rl, t)− λ(c(Rk, t))|) if Ḋk not fixed,
Z if Ḋk not found.

(5.10)

rmin(Rl, t) = max
Rk∈p(Rl,t)


Ḋk + |λ(Rl, t)− λ(Rk, t)| if Ḋk fixed,
rmin(Rk, t) + 1 if Ḋk not fixed,
0 if Ḋk not found.

(5.11)

Here, p(Rl, t) are parent nodes and c(Rl, t) are child nodes of a given node Rl in frame
t. Rl and Rk are segments in t. Let us first consider the first cases in Equation (5.10)
and Equation (5.11). Segment Rk is invoked by scribble Ṡk with a user-assigned fixed
disparity Ḋk. Ṡl is a scribble pair. In Equation (5.11), the minimum restriction for Rl is
determined from the maximum disparity of all its parent nodes i.e., maxRk∈p(Rl,t)(Ḋk)
(e.g., Figure 5.12 c), yellow node derives disparity rmin from light blue node). Since
Rl should have a larger disparity than Rk (Rl occludes Rk), Ḋk is increased by the
difference in depth levels of the current and the found node, i.e., |λ(Rl, t)− λ(Rk, t)|. In
Equation (5.10), the maximum restriction rmax(Rl, t) for Rl in t is determined analogously.
When considering scenes that contain scribble pairs that occlude each other (e.g., due to
a camera zoom), the focus in Equation (5.10) and Equation (5.11) is on their second and
third cases. In these cases, segments Rl and Rk correspond to scribble pairs Ṡl and Ṡk
and occlude each other. rmax(Rl, t) and rmin(Rl, t) are at first calculated momentarily
and updated as soon as the disparity assignment for Rl is fixed (after interpolation). In
Equation (5.10)’s second case, this is done by further traversing the child nodes of the
occluding segment Rk until a child node c(Rk, t) that corresponds to a scribble with
a fixed disparity Ḋc(Rk,t) is found. Since Ḋl should be larger than Ḋk and Ḋc(Rk,t),
|λ(Rl, t)− λ(c(Rk, t))| is subtracted from Ḋc(Rk,t). If no child node with a fixed disparity
was found, a fixed maximal disparity Z is used (in Equation (5.10)’s third case). In
Equation (5.11), rmin(Rl, t) is determined from the minimum restrictions of Rl’s parent
nodes or uses the fixed minimal disparity 0 if no parent node was found. Hence, with the
procedure described above, videos solely annotated with scribble pairs can also be processed.

Depth order guided disparity interpolation. The final disparity of each scribble pair can be
determined by interpolating their user-given disparities over time while taking into account
the restrictions that were defined above. To allow the update of momentarily set disparity
restrictions, the interpolation is performed in ascending order of λ. We perform this
temporal interpolation according to two different disparity change models, the time-based
disparity change model (DC -tM) and the segment-based disparity change model (DC -sM).
DC -tM interpolates user-assigned disparities (e.g., Ḋl = {Dl, Dk}) of a scribble pair
(e.g., Ṡl = {Sl, Sk}) between the disparity at the first (e.g., Dl) and at the last frame
(e.g., Dk). The final disparity Ḋl,t at frame t is initially given by a linear interpolation with
respect to time, in which T is the total amount of frames in the video:

Ḋl,t = Dl +
Dk −Dl

T
t. (5.12)
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DC -sM interpolates disparities with respect to a segmentRl’s size s(Rl, t) and its motion in t:

Ḋl,t = Dl +
Dk −Dl

s(Rl, T )− s(Rl, 1)
(s(Rl, t)− s(Rl, 1)). (5.13)

In particular, DC -sM considers irregularly moving objects by changing the disparity in
conjunction with segment sizes (i.e., height in pixels) in different frames. A disparity
is only updated (compared to the previous frame) if changes in the segment size and
vertical movement [56] are observed. The latter idea comes from the observation that a
change in disparity occurs more often in conjunction with vertical than with sole horizontal
motion [56]. Note that DC -sM supports the more complex case, in which an object not
only stops, but changes its movement in depth during the scene (e.g., a car moves towards
the camera, stops and reverses, before it approaches the camera again).

DC -tM and DC -sM are combined with the previously obtained disparity restrictions.
For that purpose, we perform a step-by-step interpolation for the currently considered
DC. To begin, the naive interpolation is performed between two fixed data points Dl and
Dk, i.e., the user-given disparities of Ḋl = {Dl, Dk} in the first and the last frame, and
might produce percepetual incoherencies (e.g., Figure 5.11, naive interpolations). Then,
the interpolation is further guided according to the disparity restrictions. We perform a
recursive disparity verification and adjustment step for each frame in order to remove the
mentioned incoherencies (e.g., Figure 5.11, guided interpolations). More precisely, we
compare the current disparity of each scribble pair (e.g., Ṡl) with the upper and lower
bounds that are provided by its disparity restrictions [rmin(Rl, t), rmax(Rl, t)]. If the
current disparity violates these restrictions, it is adjusted to the closest disparity within
the allowed disparity range. This adjustment adds another disparity data point to the
interpolation and triggers an according update (i.e., recomputation) of the disparities of
preceding and following frames. These recomputed disparities are again recursively verified
and, if necessary, adjusted until only valid disparities are used. Thus, after this procedure
the disparity change model of each scribble pair specifies a disparity that is consistent with
the previously extracted disparity restrictions in each frame.

Figure 5.13 illustrates this procedure for the scene shown in Figure 5.11 for DC -tM (Fig-
ure 5.13 a) and b)) and DC -sM (Figure 5.13 c) and d)). In this example, the disparity of the
small dragon, who’s scribble pair contains a yellow scribble in the first and a blue scribble in
the last frame in Figure 5.11, is interpolated over time. The colors of the restrictions (i.e., blue
rectangles and red line in Figure 5.13) correspond to the colors of the scribbles in Figure 5.11.
The yellow line in Figure 5.13 illustrates the performed step-by-step interpolation, before
(Figure 5.13 a) and c)) and after verification and adjustment (Figure 5.13 b) and d)). As
shown (Figure 5.11, depth order guided interpolation and Figure 5.13 b) and d)), the final
disparity maps are perceptually coherent. Contrary to the results of a naive interpolation
(Figure 5.11, naive interpolation and Figure 5.13 a) and c)), the small dragon is assigned to a
plausible disparity that conforms with the depth order in the scene.
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Figure 5.13: Step-by-step interpolation in temporal disparity change models: a)-b) time-based
(-tM) and c)-d) segment-based (-sM) disparity change model (DC). DC -sM considers segment
sizes s(Rl, t). The disparities at frames t in a) and c) are based on a naive interpolation of Ḋl

without incorporating disparity restrictions, i.e., a) on Equation (5.12) and c) on Equation (5.13).
Since in this toy example, the segment size in the second and third frame are the same, so is
the disparity in c). These disparities (yellow line) conflict with the disparity restrictions (blue
rectangles, red line). Thus, they are adjusted in b) and d): A new data point (yellow point) is
added and the interpolation between its neighboring data points is recomputed and verified.

5.3 Experimental Results and Evaluation

In this section we evaluate our interactive video object segmentation algorithm (Section 5.2.1) and
our 2D-to-3D conversion algorithm (Section 5.2.2). We show various results that were obtained by
our algorithms. The evaluation of the video object segmentation algorithm (Section 5.3.1) focuses
on the improved temporal coherence that was obtained by extending the image segmentation via
CVF [125] to the temporal domain. We further perform visual comparisons to a related video
object segmentation algorithm [4]. For the 2D-to-3D conversion algorithm (Section 5.3.2), we
systematically evaluate the impact of each component. Furthermore, we compare our results with
those from related conversion algorithms including [56] and [118].

5.3.1 Video Object Segmentation Results

Our interactive video object segmentation algorithm was implemented and tested on a 2.4 GHz
Intel Core 2 Quad PC with a GeForce GTX40 graphics card. We used CUDA for the GPU
implementation. In this configuration, our implementation requires four milliseconds to segment
a frame with a resolution of 620 × 360 pixels. Throughout our tests, we use the following
constant filter parameters to obtain a binary segmentation: rs = 11, rt = 2, ε = 0.002. The color
histograms use 32 bins per channel. Figure 5.14 shows segmentation and alpha matting (soft
segmentation) results that are generated by our algorithm. It was applied on various video shots,
including broadcast videos (Figure 5.14 a), d)-f)), a computer-generated video (Figure 5.14 b))
and a shot that was captured with the camera of a mobile phone (Figure 5.14 c)). The videos
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Figure 5.14: Our video object segmentations. Left: Frames and user input: Foreground scrib-
bles (red). Right: Corresponding segmentations with alpha matting. Zoom-ins: Results before (bot-
tom) and after (top) alpha matting. Copyright of original videos: a) Discovery Communications,
b) Blender Foundation, d) Sony Pictures, e) Twentieth Century Fox, f) ABC Studios.

consist of 60 (Figure 5.14 a)), 31 (Figure 5.14 b)), 30 (Figure 5.14 c)), 41 (Figure 5.14 d)),
15 (Figure 5.14 e)) and 21 (Figure 5.14 f)) frames, respectively. In each video only two frames
had to be annotated (Figure 5.14, first two columns) to obtain the results shown (Figure 5.14, last
three columns). On average, eight scribbles were placed in a video of 33 frames. Note that we
used only foreground scribbles. We obtained spatially and temporally coherent segmentations, in
which temporal and spatial edges coincide with color edges in the corresponding input video. As
can be seen in the zoom-ins (Figure 5.14, right), the additional matting step further refines our
segmentations by capturing fine details and transparencies. The test videos include examples with
similar colors in the fore- and background (e.g., Figure 5.14 b)), which would lead to errors, when
only using the data cost (i.e., P ) without smoothing (Figure 5.15). We observed limitations in
scenes with weak borders between fore- and background regions. Figure 5.16 shows an example
of such a failure case, where the color of a ground patch matches the color of the bison’s horn,
which causes it to be erroneously assigned to the foreground.

Comparison to per-frame filtering [125]. We compare our approach, which aggregates prob-
abilities spatially as well as across frames, with the per-frame CVF approach of [125]
that uses a two dimensional (spatial) kernel. For both approaches we use the same user
input and color models, which result in the same cost volume. Except for the additional
temporal extension, we use the same parameters (i.e., rs = 11, ε = 0.002) as for the filter
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Figure 5.15: Video object segmentation based only on data cost (no smoothing). Left: Frames
with red foreground scribbles. Right: Soft segmentation result. The zoom-ins show the results
before (bottom) and after (top) alpha matting. Copyright of original video: Blender Foundation.

Figure 5.16: Failure case of proposed video object segmentation algorithm. Left: Two frames
with red foreground scribbles. Right: Soft segmentation result. Zoom-ins: Result (top), input (bot-
tom). Copyright of original video: Discovery Communications.

in [125]. We observe that the filtered cost volume and, more importantly, the segmentation
results are temporally more coherent when using our proposed approach. Figure 5.17 gives
an example for this case. Contrary to the per-frame approach [125] (Figure 5.17 b)), our
approach achieves a largely flicker-free segmentation (Figure 5.17 c)). We quantitatively
compare our binary segmentation maps (e.g., Figure 5.17 b) and c)) using a measure for
temporal coherence [83], which we refer to as Flickering Error (FE):

FEi(t) =
|ai − aj |
|Ii − Ij |+ 1

. (5.14)

This measure detects label changes (a ∈ {0, 1}, 0 background, 1 foreground) of temporally
neighboring pixels i and j. The error for such a label change is given by the pixels’ color
similarity Ii, Ij . Accordingly, the error for label changes at similar pixels is higher than for
label changes that go along with color changes. It can be seen (Table 5.1, Figure 5.17) that
filtering the cost volume with our spatio-temporal approach significantly reduces the error
(e.g., for Bear reduction of 56 percent from per-frame [125] to spatio-temporal), which
indicates temporally more coherent results. An additional temporal weighting (Table 5.1,
spatio-temporal + weighting) can lead to improvements over the approach without weighting.
In Table 5.2, we further compare the soft segmentation results that were generated from the
same binary segmentations, but by using the different filtering approaches discussed above
(per-frame [125], spatio-temporal, spatio-temporal + weighting) to approximate the alpha
matting process. The same filter parameters (i.e., rs = 5, rt = 1, ε = 0.00001 for alpha
matting9) are used for all filtering approaches, except for the nonexistent temporal radius
in case of [125]. Table 5.2 shows that our spatio-temporal filtering approach increases the

9In practice, different scenes typically require different filter parameters. The parameters also depend on the size
of the image areas in which mixed pixels at object borders are expected. For instance a close-up of a person with long
hair (typical cause of mixed pixels) usually requires larger filter windows than a wide-shot of the same person.
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Table 5.1: Binary segmentation – comparison of per-frame [125] and spatio-temporal approach.
Averaged Flickering Error [83] for binary segmentations of eight videos. From top to bottom:
The segmentations were computed by thresholding the not filtered P , the per-frame and the
spatio-temporally filtered P without and with weighting. The errors are multiplied by 1000.

Averaged Flickering Error Bear Board Temple Who Girl Surf Arms Fish
not filtered 3.23 5.67 0.12 1.18 3.64 3.23 4.43 4.23
per-frame [125] 1.03 0.74 0.31 0.19 0.93 0.25 1.35 1.14
spatio-temporal 0.45 0.32 0.20 0.10 0.64 0.17 0.52 0.66
spatio-temporal + weighting 0.43 0.31 0.20 0.09 0.61 0.17 0.47 0.62

Table 5.2: Soft segmentation – comparison of per-frame [125] and spatio-temporal alpha matting.
Averaged Flickering Error [83] for the alpha mattes of eight videos. From top to bottom: Error for
the input, i.e., a binary segmentation (not filtered). The alpha mattes were computed by per-frame
filtered binary segmentation maps [125] and the spatio-temporally filtered binary segmentation
maps without and with weighting. The listed errors are multiplied by 1000.

Averaged Flickering Error Bear Board Temple Who Girl Surf Arms Fish
not filtered 1.50 0.64 0.20 0.10 0.64 0.17 0.52 0.66
per-frame [125] 1.81 0.73 0.57 0.27 0.72 0.28 0.61 0.87
spatio-temporal 1.61 0.74 0.42 0.24 0.68 0.26 0.67 0.82
spatio-temporal + weighting 1.60 0.72 0.41 0.24 0.67 0.26 0.66 0.81

temporal coherence for the alpha matting step. We also observe a failure case, i.e., for Arms,
which is shown in Figure 5.18. In this particular example, large movements (approximately
60 pixels) and color similarities between successive frames cause subtle temporal alpha
matting artifacts (Figure 5.18, zoom-ins) when applying our spatio-temporal approach.

Comparison to geodesic segmentation [4]. Due to the lack of segmentation ground truth, we
visually compare the results of our binary segmentation to those of a geodesic segmentation
framework (Figure 5.19). We use our re-implementation of [4] to generate the shown
binary segmentations. Our algorithm outperforms the geodesic segmentation algorithm [4]
using the same foreground scribble as input. While our background model is based on
randomly chosen samples, in [4] users initialize the background model with an additional
background scribble. As can be seen in Figure 5.19, our segmentation results adapt better
to the scenes than those of [4]. In contrast to the results obtained by the re-implemented
geodesic algorithm (Figure 5.19 b)), in our results (Figure 5.19 a)) label changes coincide
with spatio-temporal edges in the input video. This is, in fact, a result of guided filtering,
which smoothes probabilities in homogenous regions of the input video.

5.3.2 2D-to-3D Conversion Results

Our CVF-based 2D-to-3D conversion algorithm was tested on a 2.4. GHz Intel Core 2 Quad PC.
Contrary to our video object segmentation algorithm, for the 2D-to-3D conversion algorithm we
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Figure 5.17: Visual comparison of proposed video object segmentation algorithm to [125].
a) Frames from Bear. b) Binary segmentation maps from per-frame cost volume filtering [125] and
c) our spatio-temporal cost volume filtering. Red arrows: Region that flickers. Foreground: white,
background: black. Copyright of original video: Discovery Communications.

Figure 5.18: Failure case of spatio-temporal alpha matting. Left: Input frames and input
binary segmentation map. Right: Alpha mattes computed by per-frame [125] and spatio-temporal
filtering of the segmentation maps with (st. + weighting) and without weighting (spatio-temporal).
Zoom-ins: Temporal alpha matting artifacts, which are not visible when filtering only per-frame.
Copyright of original video: Buena Vista Home Entertainment and Touchstone Television.

use a regular C++ implementation that runs on the CPU. In this configuration our algorithm
requires 100 seconds to generate a disparity video from a monoscopic video that consists of ten
frames (resolution of 1024× 436 pixels) and was annotated with five scribbles. This runtime was
measured excluding the computation of OF, but including all previously discussed components of
our conversion algorithm (i.e., MS, STC, CON, DC -tM and +TC). The most computationally
expensive components are CON and +TC, which consume 40 and 48 seconds, respectively.
The usage of common GF (without motion) instead of our motion guided filtering in +TC
reduces the total runtime to 67 seconds. It is worth noting that a CUDA implementation of
the conversion algorithm would have similar runtime properties as the CUDA implementation
of our object segmentation algorithm (Section 5.2.1.2). Specifically, only by using the CUDA
implementation of GF instead of its currently used C++ implementation (using common GF),
we would approximately gain a speed-up by a factor of 1.310 Other components of our algorithm,

10The speed-up factor was determined by comparing the total runtime of our algorithm with its currently used
C++ implementation of the common GF and the total runtime of our algorithm with our CUDA implementation of
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Figure 5.19: Visual comparison to [4]. For each video: Frame and user input (left). Binary
segmentation of a frame (right) for a) the proposed algorithm and b) for [4]. The user input differs
only in the additional background scribble (blue) for [4]. The same foreground scribble (red) is
used. Copyright of original video Bear: Discovery Communications.

e.g., the WTA scheme [62, 125], are as well suitable for parallel execution on the GPU.
Our CVF-based 2D-to-3D conversion algorithm was tested with the following filter parameters

to obtain disparity maps for an annotated monoscopic video: rs = 11, rt = 2, ε = 0.0016. The
color histograms use 32 bins per color channel (i.e., RGB). STC uses a global tclose which is
set to the maximal possible distance within a frame for all scribbles. All shown results that
use DB are obtained with n = 2. Figure 5.20 shows disparity maps that were generated by
our CVF-based 2D-to-3D conversion algorithm that was applied on four monoscopic videos,
including shots from broadcast videos (Figure 5.20 a), b) and d)) and a shot that was captured
using the camera of a mobile phone (Figure 5.20 c)). The shown videos consist of 16, 8, 60
and 20 frames, respectively. In each video two frames had to be annotated to obtain the shown
results (Figure 5.20). On the average, 22 scribbles were placed in a video of 26 frames with
an average resolution of 713× 402 pixels. These scribbles are, on the average, assigned eight
different disparities in the range of [51, 243]. All shown results use STC and CON. The videos
in Figure 5.20 a), b) and d) contain objects that move in depth. Thus, we additionally use our
proposed temporal disparity change models to capture these changes (i.e., DC -sM). We obtained
spatially and temporally coherent disparity maps that adapt well to the corresponding scenes. As
can be seen in Figure 5.20 a) and b) (women moving in depth) our algorithm captures temporal
disparity changes in a perceptually coherent manner. The 2D-to-3D conversion results that were
obtained using DB (e.g., Figure 5.20 a) and b)) contain plausible disparities on slanted or rounded
surfaces. The videos in Figure 5.20 c) and d) are obtained using the WTA scheme, resulting in
less smooth, but likewise satisfactory disparity maps. It can be seen that our proposed algorithm
is able to capture fine details (e.g., violin bow in Figure 5.20 c) or hair in d)) and provides hard
disparity edges that coincide with object borders in the scene. Figure 5.21 shows novel views
that were generated from our disparity maps using a professional stereoscopic software [144].
Specifically, we used our conversion results in Figure 5.21 b) and the given monoscopic video
frame in Figure 5.21 a) to generate a novel view in Figure 5.21 c) for two of the test videos

the common GF that was used in Section 5.2.1.2 and Section 4.3.2. These spatio-temporal filtering steps consumes
15.2 and 0.1 seconds for the C++ implementation and CUDA implementation of GF, respectively.
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Figure 5.20: Our 2D-to-3D conversion results. Input video with disparity scribbles in the first
and last frame of a video shot (top): Scribbles hues encode disparities. Obtained disparity maps
for the shown example frames (bottom): Bright foreground, dark background. Copyright of
original videos: a) NBC Olympics, b) BBC, d) Twentieth Century Fox.

shown in Figure 5.20. These examples demonstrate that our disparity maps are suited for further
processing concerning (auto-)stereoscopic viewing conditions.

Comparison of different algorithm versions. We systematically evaluate the impact of the
components of our 2D-to-3D conversion algorithm (Figure 5.5). We consider the following
versions of our algorithm, in which different components are en- or disabled:



5.3. Experimental Results and Evaluation 89

Figure 5.21: Novel views generated from our conversion results. a) Frame of given input video.
b) Corresponding generated disparity map. c) Novel view generated from a) and b) using a
professional stereoscopic software [144]. The conversion results that are used in this example
correspond to videos shown in Figure 5.20. Copyright of original video (top): NBC, Olympics.

• The version MS only enables the component MS (Figure 5.5). Thus, it is only based on
color and cannot capture temporal disparity changes. It does not perform a temporal
disparity interpolation and only assigns given disparities from the first frame.

• The version STC additionally applies the component STC (Figure 5.5).

• The version CON applies the components MS, STC and CON (Figure 5.5), but, as in
the two previous versions, does not interpolate disparities over time.

• The version DC -tM additionally employs the time-based temporal disparity change
model (Figure 5.5, DC -tM). Thus, given disparities from the first and last frame are
interpolated guided by previously extracted depth order cues.

• The version DC -sM alternatively uses the segment-based temporal disparity change
model (Figure 5.5, DC -sM) to interpolate disparities according to depth order cues.

For all versions mentioned above, we apply the common GF [59] during CVF [125] and
our motion guided filtering (i.e., +TC). Since the evaluation results with WTA behave
analogously to those with DB, we only list the former in Table 5.3. However, Appendix B
(i.e., Table B.1) contains corresponding results for DB. The evaluations are performed on
eight videos from [27] that were provided with depth GT (in meters)11. In Appendix A,
we show visual examples of these videos and their GT. Like in our previously performed
evaluations of 2D-to-3D conversion results, for each scribble we propagate the mean
inverted12 GT depth of all pixels that are marked by it. Table 5.3 reports the MSEs

11The authors of [27] provided us with GT depth data for test videos in [27]. These authors recently released an
updated version of their data, i.e., the MPI Sintel Depth Training Data.

12Our CVF-based 2D-to-3D conversion algorithm assumes disparities with large values in the foreground and low
values in the background. Hence, the GT depth has to be inverted before using it as input (and reference solution).
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(Equation (4.8)) of the normalized inverted depth values13 between the GT and our results.
Our results in Table 5.3 were computed with GT OF from [27] and with estimated OF [96].

Let us first consider the results that were generated with WTA and GT OF (Table 5.3,
top). When comparing the evaluation results of algorithm versions that use common GF
with versions that use our motion guided filter (+TC), the latter on average reduce the
MSEs by approximately 16 percent. Large improvements are observed for videos with fast
motion, e.g. Ambush2 in Figure 5.27 a) and b) (up to approximately 100 pixels between
frames). This indicates that our motion guided filtering is important for videos with fast
moving objects, while for videos with small motion common GF is sufficient. In some
cases, we also observe slight degradations of the results when additionally applying +TC,
e.g., Sleeping1 in case of MS. These degradations can be explained by color ambiguities
that are (as well) present at the adjusted positions of the filter windows. Table 5.3 further
shows that both the closeness and the connectivity constraint have a positive effect on the
results. Specifically, when comparing the MSEs of MS with those of STC and the MSEs
of STC with those of CON, the additional constraint decreases the errors for nearly all
test videos. As shown in Table 5.3, our temporal disparity interpolation can improve the
results for videos that contain objects which exhibit motion in depth, compared to versions
that do not capture temporal depth changes. The significantly reduced errors for Shaman3
and Sleeping1 especially stand out (i.e., from CON to DC -tM the MSEs decrease by a
factor of 4.78 and 7.52, respectively). In both videos a camera zoom in the scene causes a
large depth change for all objects (Figure 5.22). We also observe visual improvements for
other videos that contain objects with smaller movement towards or farther away from the
camera (e.g., Temple3, Figure 5.26). The MSEs of DC-tM and of DC-sM are similar. In
this context, it is worth noting that the tested videos do not contain objects with irregular
movement, e.g., objects that stop for a few frames, which are the focus of DC-sM.

As mentioned above, the results that were generated with WTA and with DB behave
similarly (compare Table 5.3 and Table B.1). If enabling a component improves the WTA
result, it typically also improves the DB result. Typically, videos that mainly contain objects
that are more or less fronto-parallel (e.g., Figure 5.23 b)) perform better with WTA than
DB. On the contrary, videos with slanted or rounded objects (e.g., Figure 5.23 a)) perform
better with DB. Note that in the latter videos smooth transitions of scribble disparities (or,
in the case of test videos from [27], depths) with overlapping color models are desired.
While DB, in some cases, compensates for color ambiguities between close-by scribbles
(e.g., Figure 5.23 a), green arrow), in other cases DB’s smoothing operation introduces
errors for the same reason (e.g., Figure 5.23 b), red arrow).

Comparison of naive and depth order guided interpolation. In the following, we compare
equivalent versions of our algorithm that perform the temporal interpolation with and
without taking depth order cues into account. Figure 5.24 and Figure 5.25 show examples of
our 2D-to-3D conversion results that perform such a naive interpolation and corresponding
results that use our depth order guided interpolation. In the shown examples, performing

13For each video, our conversion results and the GT are normalized by the same factor, i.e., their maximal depth.
This prevents videos with large depth ranges from having larger errors than videos with narrow depth ranges.
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Figure 5.22: Comparison of proposed algorithm with dis- and enabled disparity change models
(WTA, GT OF). a) Input video with scribbles (top) and depth GT (bottom). b) 2D-to-3D
conversion results with disabled (i.e., CON) and c) with enabled disparity change models (i.e., DC -
sM). Our results (top) and their errors to the GT (bottom). Error: Black small and white large
errors. Result and GT: Bright foreground, dark background. Original video from [27].

naive interpolations for scribble pairs leads to perceptual conflicts (Figure 5.24, red arrows),
while our depth guided interpolation improves the results concerning their perceptual
coherence (Figure 5.24, green arrows). The achieved improvement is especially noticeable
when comparing the results visually, while the corresponding quantitative evaluation results
are very similar to each other. This may be explained by the fact that our depth order guided
interpolation corrects naive interpolations that lead to a perceptual incoherency to the closest
valid disparity (or, in the case of [27], inverted depth value). Nonetheless, we additionally
provide quantitative evaluation results in Appendix B (Table B.2 and Table B.3).

Evaluation of sensitivity to quality of motion information. The MSEs of the algorithm ver-
sions in Table 5.3 were computed by using GT OF from [27] and by using estimated
OF [96]. To better illustrate the difference in quality of the used OFs, we additionally list
the Endpoint Error [6] (EE) that is computed between the GT OF and the estimated OF
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Figure 5.23: Comparison of assignment schemes (i.e., DB and WTA, GT OF). a) Shaman3
(DC -tM). b) Shaman2 (DC -sM). Per video: Left: Input frames with scribbles and depth GT.
Right: Input frame, GT, our results with DB and WTA. (Front: bright, back: dark). In a) DB
performs better (green arrow) than WTA, in b) vice versa (red arrow). Original videos from [27].

in Table 5.3. Clearly, the estimated OF is not ideal14, i.e., on average the EE decreases
by 12.75 percent when comparing the GT OF and the estimated OF.

When comparing the errors with GT OF and estimated OF in Table 5.3, on average the
quality of our results is hardly affected by the change of used OF. When examining the
results in detail, we observe that already the MSEs for MS differ. This is caused by the
scribble matching and grouping results, which differ for different OF inputs. Consequently,
the 2D-to-3D conversions are performed based on different color models. This also affects
subsequent versions of the algorithm. Furthermore, erroneously matched scribble pairs
might lead to perceptual conflicts in the conversion results that were generated using a
naive interpolation technique. In fact, in this evaluation of our algorithm’s sensitivity to
the quality of used OF, the difference between the scribble matching and grouping results
with GT OF and the scribble matching and grouping results with estimated OF emerged
as a main reason for the de- and increases of MSEs (in Table 5.3, bottom versus top). In
this context, Figure 5.26 and Figure 5.27 show our results for two videos, i.e., Temple3 and
Ambush2, that were obtained with GT OF and estimated OF. For Temple3, the results with
estimated OF consider the scribbles on the wing (Figure 5.26, first frame turquoise, last
frame violet) as a scribble pair, which is not the case with GT OF. The resulting additionally
performed temporal interpolation leads to smaller MSEs with estimated OF. Contrary,
for Ambush2, MSEs increase when using estimated OF instead of GT OF. Figure 5.27

14It should be noted that we did not optimize the parameters of the used optical flow estimation algorithm [96].



5.3. Experimental Results and Evaluation 93

Figure 5.24: Comparison of interpolation techniques (GT OF). Input video with scribbles in
the first and last frame and GT (top). Foreground: bright, background: dark. Our 2D-to-3D
conversion results (bottom) that were obtained when using a naive interpolation and our depth
order guided interpolation for a) Ambush5 and b) Shaman2. Perceptual incoherencies (red
arrows) are corrected (green arrows) by our guided interpolation. Original videos from [27].

highlights one difference in scribble matching, where only the scribble pair found with
estimated OF causes a temporal interpolation (different depth in first and last frame). For
both OFs, some scribbles (e.g., Figure 5.27, blue arrow) cannot be tracked throughout the
video, thus, for these scribbles the components CON and STC cannot be applied.

As for GT OF, for estimated OF, we observe improvements when additionally enabling
+TC, STC, CON and DC-sM or -tM (Table 5.3, bottom). Figure 5.25 and Figure 5.27
have already provided visual examples of such improvements when using estimated OF. In
Figure 5.25, perceptual conflicts that arise in naive temporal interpolations are corrected
by our depth order guided interpolations. In Figure 5.27 +TC improves the 2D-to-3D
conversion results compared to a version with common GF.
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Figure 5.25: Comparison of interpolation techniques (estimated OF). Input video with scribbles
in the first and last frame and depth GT (top). Foreground: bright, background: dark. Our
2D-to-3D conversion results (bottom) that were obtained when using a naive interpolation and
our depth order guided interpolation for a) Temple3 and b) Ambush2. Perceptual incoherencies
(red arrows) are corrected (green arrows) by our guided interpolation. Original videos from [27].

Evaluation of sensitivity to illumination effects. While the videos that were used in the pre-
vious experiments contain challenging color similarities, they were rendered (albedo
rendering) without artistic and illumination effects such as artistic color corrections, mo-
tion blur, reflections and shadows. To test the sensitivity of our algorithm to such effects,
we re-evaluate it using the same algorithm versions, scribbles, parameters, GT OF and
scenes as in Table 5.3, but with final renderings that contain such effects. Appendix A
provides visual examples for both renderings of the scenes and their depth GT. Table 5.4
lists the corresponding MSEs with WTA. When comparing the MSEs of the final render-
ing (Table 5.4) with those that were obtained with the albedo rendering (Table 5.3, top), a
significant decrease in quality can be observed (i.e., factor 3.84 for WTA). In Table 5.4,



5.3. Experimental Results and Evaluation 95

Table 5.3: Comparison of different algorithm versions (WTA). The table lists the mean squared
error (MSE) of our results averaged over all pixels and multiplied by 100. Our algorithm is tested
in different versions (see text) and with ground truth optical flow (GT OF) (top) and estimated
OF (bottom). The endpoint error (EE) (right) measures the accuracy of the used OF.

MSE using GT OF EE
MS STC CON DC -tM DC -sM OF

+TC +TC +TC +TC +TC
Alley1 0.06 0.06 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.00

Ambush2 1.19 0.27 1.16 0.24 1.16 0.24 1.16 0.23 1.16 0.23 0.00
Ambush5 1.45 1.44 0.65 0.65 0.63 0.65 0.64 0.64 0.64 0.64 0.00
Ambush7 0.99 0.99 0.53 0.53 0.54 0.54 0.47 0.48 0.47 0.48 0.00
Shaman2 0.79 0.79 0.57 0.56 0.42 0.41 0.41 0.41 0.42 0.42 0.00
Shaman3 1.91 1.91 1.90 1.90 1.96 1.96 0.41 0.40 0.51 0.49 0.00
Sleeping1 3.65 3.66 3.62 3.62 3.61 3.61 0.48 0.48 0.56 0.57 0.00
Temple3 0.28 0.15 0.27 0.21 0.27 0.21 0.27 0.21 0.27 0.21 0.00

MSE using estimated OF EE
MS STC CON DC -tM DC -sM OF

+TC +TC +TC +TC +TC
Alley1 0.07 0.07 0.05 0.03 0.04 0.04 0.05 0.05 0.05 0.05 1.73

Ambush2 1.22 0.31 1.30 0.29 1.30 0.29 1.23 0.28 1.23 0.28 73.68
Ambush5 1.46 1.47 0.69 0.68 0.69 0.68 0.67 0.66 0.66 0.66 7.12
Ambush7 0.96 0.96 0.50 0.50 0.46 0.46 0.47 0.47 0.47 0.47 2.20
Shaman2 0.78 0.79 0.55 0.55 0.40 0.39 0.39 0.38 0.40 0.39 0.60
Shaman3 1.91 1.91 1.90 1.90 1.92 1.92 0.30 0.34 0.40 0.42 1.20
Sleeping1 3.65 3.66 3.61 3.61 3.61 3.61 0.56 0.56 0.60 0.61 2.20
Temple3 0.28 0.15 0.27 0.14 0.28 0.15 0.28 0.15 0.28 0.15 13.29

MS exhibits the largest MSEs for most videos and has large differences to corresponding
MSEs in Table 5.3, top. The main reason for the increased MSEs in Table 5.4 are color
ambiguities, object colors that were not covered by scribbles and, in some similarity to the
previously performed evaluation of the sensitivity to motion information, wrongly paired
or grouped scribbles. In Table 5.4, compared to MS, the MSEs are reduced with STC
and CON. This indicates an increase of robustness to illumination effects when addition-
ally constraining the results by spatial closeness and the 3D connectivity to the scribbles.
However, when comparing the MSEs of STC and CON for the final rendering (Table 5.4)
with those for the albedo rendering (Table 5.3, top), we conclude that illumination effects
remain challenging. Figure 5.28 and Figure 5.29 versus Figure 5.26 visually compare the
conversion results for different renderings of two test videos, i.e., Ambush7 and Temple3.
For Ambush7, Figure 5.28 shows that overlapping color models of scribbles (Figure 5.28 b),
handle and snow or glove) are especially challenging with DB. In such cases increasing
the influence of the spatial constraint by adjusting tclose can lead to improved results
(Figure 5.28, tclose = 256). Figure 5.29 provides a more detailed example for Temple3’s
final rendering that can be compared with corresponding results for its albedo rendering in
Figure 5.26. In addition to the obtained conversion result (Figure 5.29 b)), the correspond-



96 Chapter 5. Cost Volume Filtering for Video Segmentation and 2D-to-3D Conversion

Figure 5.26: Comparison of results with different motion information. a) Input video (Temple3)
with scribbles and depth GT. Our results (DC -tM +TC, WTA) b) with GT OF and c) estimated
OF: Conversion (top) and its error to the GT (bottom). Red arrows: Area that is closer to the GT
with estimated OF. This is caused by an additional scribble pair (first frame turquoise, last frame
violet) with estimated OF that temporally interpolates the depth for this area. Results: Bright
fore- and dark background. Error: Black small and white large error. Original video from [27].

ing segmentationR (Figure 5.29 d)) and (tracked) scribble positions (Figure 5.29 c)) are
shown. This example illustrates three sources of error that are also linked to illumination
effects. First, as a result of a missed scribble pair (Figure 5.29 a), scribbles on small
dragon) due to color differences between the marked pixels in the first and the last frame,
the temporal depth interpolation for the small dragon was not performed. Second, the
obtained result contains erroneous assignments (e.g., Figure 5.29 b), yellow arrows) that
were caused by color ambiguities between objects (e.g., Figure 5.29 a), yellow arrow).
While in many cases such errors are prevented by the components STC and CON, this is
not the case for the scribbles on the large dragon’s wing (Figure 5.29 c), violet scribbles
in last frame). Since these scribbles are not present in the first frames, the components
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Figure 5.27: Comparison of results with different motion information. a) Input video (Ambush2)
with scribbles (top) and depth GT (bottom). Our conversion results (i.e., DC -sM (+TC) WTA)
b) with GT OF and c) with estimated OF. Foreground: bright, background: dark. Red arrows
indicate areas that are improved (green arrows) by enabling +TC. Blue arrow points to a scribble
that could not be tracked throughout the video for both OFs. Original video from [27].

STC and CON cannot be applied for them. Third, the example contains an erroneous
depth interpolation (Figure 5.29, blue arrow) which is caused by an erroneously extracted
depth order. As discussed in Section 5.2.2, the depth order is determined from occlusions
between segments inR. Thus,Rs that are severely affected by color ambiguities, such as
in Figure 5.29 d), can lead to erroneous temporal depth interpolations.

Comparison to related 2D-to-3D conversion algorithms. We compare our CVF-based algo-
rithm to our segmentation-based conversion (GS+P) from Chapter 4, our implementation
of Guttmann et al.’s algorithm [56] and a video version of Phan et al.’s algorithm [118]15

15Phan et al.’s algorithm [118] was provided by the authors. The main difference to their originally presented
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Table 5.4: Evaluation of sensitivity to illumination effects (WTA, GT OF). The final renderings
of the test videos are used. The table lists the mean squared error (MSE) of our results averaged
over all pixels and multiplied by 100. Our algorithm is tested in different versions (see text).

MSE WTA, using GT OF
MS STC CON DC -tM DC -sM

+TC +TC +TC +TC +TC
Alley1 0.77 0.78 0.78 0.79 0.77 0.77 0.81 0.48 0.79 0.81

Ambush2 5.34 4.58 4.33 4.44 4.29 4.68 4.15 4.64 4.15 4.64
Ambush5 1.28 1.34 0.69 0.69 0.68 0.68 0.74 0.73 0.77 0.76
Ambush7 0.83 0.82 0.60 0.60 0.50 0.50 0.54 0.61 0.56 0.68
Shaman2 7.94 7.96 3.92 3.09 4.07 4.11 4.86 4.75 4.91 4.77
Shaman3 3.97 3.97 3.78 3.81 3.92 3.95 1.89 1.71 2.22 1.99
Sleeping1 3.44 3.45 3.56 3.67 3.66 3.68 0.97 1.02 1.02 1.08
Temple3 9.87 8.83 7.61 6.69 7.41 6.47 7.44 6.47 7.42 6.51

Figure 5.28: Visual evaluation of sensitivity to illumination effects. Left: Input frames with
scribbles and depth GT. a) albedo rendering and b) final rendering of Ambush7. Scribble positions
and GT remain the same. Right: Our results (with DB, CON, +TC, GT OF). Newly introduced
ambiguities (red arrow) between objects and colors that were not covered by scribbles in b)
decrease the quality of our results. Adjusting tclose can improve (green arrow) the results obtained
for b). Foreground: bright, background: dark. Original videos from [27].

that is, like ours, based on an interactive segmentation approach [19]. For both algorithms
parameters that were suggested by the authors in [56] and [118] were used. The evalu-
ation is performed on a dataset that contains five recorded videos with stereo generated
(using [12]) reference solutions (i.e., City, Parade, Palace, Stairs and Football), videos
with up to 101 frames that are provided with disparity and depth GT (i.e., Child, Head,
Interview) and three computer-generated videos with GT disparity maps from the new
Tsukuba dataset [102] (i.e., Tsukuba1, Tsukuba50, Tsukuba380). In Appendix A, we pro-
vide visual examples for all 11 videos including their reference solutions. To evaluate the

image version is that their video version applies their conversion algorithm volumetrically on the entire video.
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Figure 5.29: Failure case due to illumination effects. a) Input video (i.e., Temple3) with scribbles
(top) and depth GT (bottom). b) Our result (with DC -tM, +TC, WTA, GT OF) that was generated
for the final rendering, i.e., conversion result (top) and its error to the GT (bottom). Result and
GT: bright foreground, dark background. Error: Black small error, white large error. c) (Tracked)
scribbles. Paired and grouped scribbles have the same color. d) Multi-label segmentation R:
Segment colors correspond to scribble colors in c). Yellow arrows: Errors due to color ambiguities.
Blue arrow: Erroneous depth interpolation. Original video from [27].

quality of the algorithms’ results, we compare them to their respective reference solutions.
We employ a similar strategy as in previous 2D-to-3D conversion evaluations, i.e., the
algorithms propagate the reference solution at the scribble positions. Since our CVF-based
algorithm and [118] are based on scribbles that indicate a single disparity, we use the mean
reference solution of each scribble for all tested algorithms for a fair comparison.

Table 5.5 lists the measured errors for each tested algorithm on this dataset. For our
CVF-based algorithm, we list the best version (using estimated OF [96]) for each label
assignment scheme, i.e., WTA and DB. The shown MSEs indicate that our CVF-based
algorithm achieves competitive 2D-to-3D conversion results. It outperforms the previous
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work of Guttmann et al. [56] (that uses estimated OF from [110]) on ten test videos and
Phan et al.’s [118] (without OF) on nine videos. For five of the test videos, i.e., Palace,
Child, Head, Tsukuba50, Tsukuba1, we also achieve better results than GS+P (Chapter 4).
It is important to note that these videos contain (slight) motion in depth (e.g., due to camera
movement). Figure 5.33 exemplarily shows the results for Tsukuba1, which exhibits the
largest temporal disparity change, Figure 5.30 for Parade, Figure 5.31 for Stairs and
Figure 5.32 e) for Palace. It can be seen (Figure 5.31 e), Figure 5.33 e) and Table 5.5) that
our CVF-based algorithm produces plausible conversions that also capture the change in
disparity in a video. This is not the case for all tested algorithms, e.g., Phan et al.’s [118]
algorithm (Figure 5.33 c), Figure 5.31 d)) does not address the problem of temporal
disparity changes due to object motion or of perceptual coherence. Instead disparities from
the first and the last frame are propagated independently from each other. However, it is
fair noting that further developments of [118] in [117] (naively) address temporal disparity
changes when converting 2D videos to 3D. GS+P captures temporal disparity changes,
however, in the shown example (Figure 5.33 d)) the results contain artifacts. These artifacts
are caused by a temporal disparity interpolation that is performed within multiple small
segments with different temporal extent. Our 2D-to-3D conversions contain hard disparity
edges near object borders (e.g., Figure 5.30 e), Figure 5.31 e), Figure 5.32 d)-e) and
Figure 5.33 e)). Contrary to previous work where the disparity assignment also depends on
a global optimization, i.e., [56, 118], our algorithm does not suffer from over-smoothed
disparities at object borders. While in some cases this effect might be desired to add volume
to objects (e.g., Figure 5.30 d), buildings), in other cases it unrealistically bends foreground
objects towards the background (e.g., Figure 5.30 d), person in the foreground). When
examining our results in detail, we notice that most videos that contain temporal disparity
changes, e.g., City, Palace, Stairs, Head, Tsukuba1, Tsukuba50 and Tsukuba380, perform
best when disparity change models are enabled. This observation highlights the importance
of temporal disparity interpolations in context of 2D-to-3D conversion. Furthermore,
test videos that exhibit large motion, e.g., Child, Tsukuba1 and Tsukuba380, achieve the
lowest MSEs when using a version with motion guided filtering (+TC), which confirms
its usefulness for such scenes. We observe limitations for videos that contain (close-by)
objects with similar colors and scribble annotations that result in overlapping color models
(e.g., Figure 5.31 e) and Figure 5.32 d), red arrows). Concerning these limitations, STC
and CON improved our results compared to MS. In fact, in Table 5.5 MS is not listed,
i.e., MS was never the version that exhibited the smallest MSE.

5.4 Summary

In this chapter we have first proposed an interactive video object segmentation and matting
framework for videos that obtains spatio-temporally coherent segmentations at interactive rates
(i.e., 250 fps for a video with a resolution of 620× 360 pixels per frame). Its user interface allows
performing the segmentation based on sparse user input (i.e., few foreground scribbles). Our
main contribution was to extend an interactive single image segmentation approach that is based
on spatial cost volume filtering to the temporal domain. We have qualitatively and quantitatively
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Table 5.5: Comparison to related 2D-to-3D conversion algorithms. Our segmentation-based
conversion (GS+P, Chapter 4), our implementations of [56] and [118] are compared to reference
solutions. For our CVF-based algorithm (WTA and DB) we list the best versions for each video.
The table lists the mean squared error (MSE) averaged over all pixels and multiplied by 100.

MSE WTA DB WTA DB GS+P [56] [118]
City DC -tM +TC DC -sM 1.08 1.06 0.47 1.24 1.08

Parade STC STC 0.74 0.63 0.28 0.99 0.85
Palace DC -tM +TC CON +TC 1.16 1.31 1.20 1.56 1.14
Stairs DC -tM +TC DC -tM +TC 0.86 0.96 0.51 0.72 0.60

Football STC STC 0.51 0.52 0.40 0.57 0.64
Child CON +TC CON +TC 0.57 0.55 0.58 1.09 1.13
Head DC -tM +TC DC -tM +TC 0.49 0.44 0.65 4.68 1.45

Interview CON +TC CON +TC 0.80 1.10 0.56 12.76 15.57
Tsukuba50 DC -tM +TC DC -tM +TC 0.15 0.17 0.15 2.61 1.92

Tsukuba380 DC -tM +TC CON +TC 0.44 0.54 0.21 2.22 0.69
Tsukuba1 DC -tM +TC DC -tM +TC 0.10 0.09 0.15 2.22 0.79

shown that additional aggregation of costs across frames significantly reduces flickering in the
segmentation results. We have further demonstrated that our proposed approach outperforms
previous video segmentation algorithms that have similar runtime capabilities as ours.

The semi-automatic 2D-to-3D conversion algorithm that was presented in the main part of this
chapter has taken a step towards the generation of perceptually coherent disparity maps. With our
object segmentation algorithm as foundation, we were able to use spatio-temporal segmentation
information to capture hard edges in disparity maps and perform smooth disparity interpolations
over time. These disparity interpolations were performed in accordance with motion-caused
occlusions. Evaluations demonstrated that our proposed algorithm generates plausible disparity
maps that capture the disparity change of dynamic objects in a 2D video shot. Enabling different
components of our algorithm decreased the error rates of our results, e.g., additionally using
a motion guided filtering instead of a common filter operation decreased the error rates by
approximately 16 percent. Further evaluations of our algorithm’s sensitivity to motion information
revealed that our scribble matching and grouping is often influenced by the motion information
used. This suggests it would be beneficial to support manual adjustments of the scribble matching
and grouping results during processing. In presence of perceptual conflicts in conversion results
that were generated using a naive disparity interpolation, our proposed disparity interpolation has
demonstrated its ability to improve the 2D-to-3D conversion results. Our systematic evaluation not
only revealed the mentioned strengths, but also some weaknesses, e.g., sensitivity to illumination
effects and color ambiguities, of our algorithm. In comparison to related semi-automatic 2D-to-3D
conversion algorithms, our CVF-based algorithm generated highly competitive results on a set
of recorded and computer-generated 2D videos and outperformed a well-established 2D-to-3D
conversion algorithm on nearly all tested videos. In this context, key advantages of our approach
were the reduction of over-smoothing and the additional capture of temporally changing disparities
in a spatio-temporal and perceptual coherent manner.
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Figure 5.30: Visual evaluation and comparison to [56] and [118] (Parade). a) Frames and
scribbles. b) Reference solution. Foreground: bright, background: dark. c) Result obtained
with [56] and d) with [118]. Yellow arrows highlight over-smoothing. e) Our CVF-based results:
Hard disparity edges at object borders. Red arrows: Errors due to overlapping color models.
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Figure 5.31: Visual evaluation and comparison to [56] and [118] (Stairs). a) Frames and scribbles.
b) Reference solution. Foreground: bright, background: dark. Result obtained with c) [56] and
d) [118]. e) Our CVF-based WTA results: Contrary to c) and d), in e) the disparity change (person
approaching stairs) is captured. Compared to c), e) has hard disparity edges at object borders, but
no smooth transitions between different disparities (e.g., on stairs) to indicate slanted surfaces.
Yellow arrows: Over-smoothing. Red arrows: Errors due to overlapping color models.
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Figure 5.32: Visual evaluation and comparison to [118]. a) Frames and scribbles from Palace.
b) Reference solution. Foreground: bright, background: dark. c) Result obtained with [118]:
Yellow arrows: Over-smoothing. d) and e) Our CVF-based results. d) and e) have hard disparity
edges at object borders compared to c). Red arrows: Errors due to overlapping color models.
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Figure 5.33: Visual evaluation and comparison to [118]. a) Frames and scribbles from Tsukuba1.
b) GT disparity maps: Bright foreground, dark background. c) Result from Phan et al. [118].
d) Our joint segmentation and propagation results (GS+P, Chapter 4). e) Our CVF-based results:
Contrary to c) and d), in e) the disparity change due to a camera zoom is captured evenly. Orange
arrows highlight errors in c) and d). Original video from [102].





CHAPTER 6
Evaluation of 2D-to-3D Conversion

Systems in Conjunction with User
Input

6.1 Introduction

Semi-automatic 2D-to-3D conversion systems are strongly based on user input (e.g., scribble-
based user annotations) to initialize their conversions. This dependency of conversion systems on
user input, e.g., on scribble placement or on a user preferred scribbling strategy, can influence
the conversion results. Not only a user, but also a 2D-to-3D conversion system might prefer
one scribbling strategy over another. For instance, a small scribble in the center of an object
can lead to different conversion results than a large scribble of the same disparity that roughly
traces the object border. We already observed similar effects. In Chapter 4, we have compared
different 2D-to-3D conversion results that were initialized with the same disparities and generated
with the same system, but using different scribbling strategies. In some similarity, in Chapter 5,
we have kept the scribbles constant, but used different renderings (that considered different
illuminations) of the same 2D scenes. Thus, the scribbles covered the same but differently
colored pixels as in the initial rendering. Likewise, the 2D-to-3D conversion results that were
obtained for the different renderings of the same scene were quite different. Although a given user
input matter-of-factly constitutes an important factor when generating 3D content, it is typically
neglected when evaluating 2D-to-3D conversions, e.g., [56, 82, 156]. As the mentioned examples
from the literature, the evaluations that were performed in the previous chapters mainly focus on
the comparison of 2D-to-3D conversion systems when given the same fixed scribbles without
considering their placement or the user’s preferred scribbling strategy.

The main contribution of this chapter is a systematic evaluation of semi-automatic 2D-to-3D
conversion systems under consideration of the user input. Our evaluations focus on systems
that work with scribble-based user annotations, as and including those that were presented
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in this thesis. We automatically generate various sets of scribble inputs that simulate users
who take on different scribbling strategies, including minimalistic and more labor-intensive
ones (Section 6.2). The 3D content, generated based on these scribbles, is then compared with
reference solutions that encode ground truth (GT) depth information of the processed 2D data. In
the first experiment (Section 6.3.1), we compare the accuracy of 2D-to-3D conversion systems
and scribbling strategies. We then investigate the effect of small scribble perturbations on the
2D-to-3D conversion results (Section 6.3.2). Since scribble-based user annotations are not
necessarily accurate, e.g., a scribble with a foreground disparity might accidentally cover some
pixels that should be assigned to a background disparity, our third experiment addresses the
robustness to such errors (Section 6.3.3). Our fourth series of experiments (Section 6.3.4) is an
in-depth evaluation of the tested 2D-to-3D conversion systems and scribbling strategies under
consideration of the 2D content. Specifically, we investigate which scribbling strategy is ideal
for which region in a 2D image (e.g., homogenous regions or multicolored regions). With these
four experiments, we reveal strengths and weaknesses of the tested 2D-to-3D conversion systems
in conjunction with different scribbling strategies and provide practical insights concerning the
scribble-based annotation process. We believe that both aspects are useful for future developments
in the field of 2D-to-3D conversion and the efficient usage of such systems.

In the 2D-to-3D conversion literature, evaluations focus on quantitative comparisons of
conversion results with GT (disparities or depths) or other reference solutions (e.g., [28, 31,
56, 58, 94, 156, 159, 175]), user studies in which participants subjectively assess the results’
quality (e.g., [28, 56, 92, 94, 117, 163, 175]) or sole visual comparisons of shown results (e.g., [29,
41, 44, 82, 91, 116, 118, 130, 165, 169]). In these evaluations the user annotations are initially
performed and kept fixed. In [92], the authors include the usability of the given 2D-to-3D
conversion system in their evaluations by measuring the annotation times required by users to
convert 2D content to 3D. Contrary to our field of 2D-to-3D conversion, in the related field
of interactive segmentation, the user-centric component of segmentation systems is more often
considered during evaluation. In [76], Kohli et al. propose a framework which simulates an
interactive user who evaluates interactive segmentation algorithms. Starting with an initial set
of fixed scribbles, their simulated user places scribbles in the largest wrongly segmented region
(comparison with segmentation GT) until a maximum number of allowed scribbles is reached.
In some similarity to our work, an experiment in [76] compares simulated users with different
strategies for automated scribble placement. Related works also include evaluation studies
concerning the error tolerance of interactive segmentation algorithms when inaccurate scribble
annotations are given (e.g., [3]), objective and subjective evaluations concerning the effect and
user preference of different interaction methods in the field of interactive segmentation (e.g., [60])
and discussions concerning the minimum number and placement of scribbles in the context of
image colorization algorithms (e.g. [37, 128]). Since all of the previously mentioned evaluation
studies are performed in different fields, there is no strong overlap with our evaluation study.
However, the previously mentioned evaluation studies motivated our work. Inspired by [60]
and [76] we simulate users who take on different scribbling strategies and study their effect on the
obtained 2D-to-3D conversion results. Like [3], we investigate the effect of inaccurate scribbles
on generated results and in some similarity to [37, 128], we are interested in finding guidelines
for an ideal scribble placement to further facilitate and speed-up the annotation process for users.
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6.2 Evaluation Strategy

We perform our evaluation study on a dataset that contains 19 still images and reference solutions
from [134] and [27]. The benchmark setup, including the test data, is discussed in Section 6.2.1.
The tested 2D-to-3D conversion systems are discussed in Section 6.2.3. Our study evaluates
each conversion system by annotating each image with 41 different, automatically generated
sets of scribble input. The generation of these scribbles is discussed in Section 6.2.2. Due the
large number of different scribble-sets per image and conversion system, we perform an objective
evaluation study in which the 2D-to-3D conversion results are compared with corresponding
reference solutions. The large amount of generated 3D content, i.e., 5× 41 = 205 conversions
per image, is the main factor for our decision to perform an objective evaluation study on images
instead of videos or subjective assessments of the result’s quality.

6.2.1 Benchmark Setup

Test data and reference solutions. Our evaluation study is performed using a dataset (Fig-
ure 6.1) that contains 19 still images and corresponding reference solutions; 15 images
are taken from the Middlebury stereo dataset [134] and four images are taken from the
MPI Sintel dataset [27]. The Middlebury stereo dataset provides GT disparity maps for
2D images. The authors of the MPI Sintel dataset1 provided us with GT scene depths (in
meters) for their 2D content. To derive reference solutions that can act as disparity maps,
i.e., small values in the background and large values in the foreground, the depth data
from [27] is inverted. In both cases, we normalize the GT by the maximal (disparity) value
per image, resulting in normalized GTs in the range of [0, 1] that act as reference solutions
in our evaluations. Although the reference solutions were derived from two different, but
(inversely proportional) related units (see Chapter 2 for details), i.e., disparity (in pixels)
and depth (in meters), the inversion of the depth data and the normalization to the range
of [0, 1] align them and make it possible to use them together in a single evaluation study.
Since scribble-based annotations only initialize a few distinct disparities2 and typically do
not cover the entire range of disparities given in a GT, we further modify the range of the
reference solutions. The reference solution of an image contains the same set of disparities
as the scribbles that are used to annotate the image. In a nutshell, our test data is accompa-
nied by reference solutions that encode the depth of each pixel as normalized “disparity“,
which is large in the foreground and small in the background. The data used (Figure 6.1)
contains computer-generated (e.g., Ambush2) and recorded (e.g., Aloe) images. Scenes with
multicolored objects (e.g., Aloe), low contrast scenes (e.g., Lampshade1), cluttered scenes
(e.g., Dolls) or color similarities between objects at different disparities (e.g., Temple3)
pose challenges to 2D-to-3D conversion systems. Generally, the computer-generated 2D

1The same authors later released training data with depth GT, stereo videos with disparity GT and segmentation
GT [27, 166]. Since disparity GT was not available at the time our evaluations were performed, we use depth GT that
was provided earlier for us by the authors of [27].

2Scribbles that initialize 2D-to-3D conversions typically result in a similar, but simpler depth impression than
provided by a depth or disparity GT (reduced amount of input scribbles). For example, less salient slanted or rounded
surfaces are often annotated with a single scribble and, hence, are approximated to fronto-parallel ones.
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Figure 6.1: Overview of test data. 2D images (top) and reference solutions (below), i.e., dispari-
ties (orange) and inverse depths (green) from [134] and [27]. The GT that was originally provided
with the 2D images (left of dotted line) and our derived, normalized reference solutions (right of
dotted line) are shown (background: dark, foreground: bright, missing GT pixels in [134]: black).
Marked (blue asterisk) images are removed for a smaller version of the dataset.

images from [27] have sharper object borders (color) than those from [134], but also exhibit
large color overlaps between objects at different disparities and multicolored objects that
are located at a single disparity.

GT scribbles. During this evaluation study, we use the same strategy as in our previously
performed evaluation of 2D-to-3D conversion results, i.e., we propagate the reference
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solution at the scribble positions instead of directly using a disparity that is encoded
by a scribble color. Thus, our scribbles do not introduce inaccurate choices of scribble
disparities. As will be further detailed in Section 6.2.2 and Section 6.2.3, each scribble
encodes exactly one disparity. All investigated 2D-to-3D conversion systems are tested
with the same scribbles that encode the same disparities and the same 2D images.

Quality metric. We use a quantitative error metric that estimates the quality of the obtained
2D-to-3D conversion results. We compare the obtained results, i.e., the generated disparity
maps, with the reference disparity maps that were derived from an image’s GT. More
precisely, we follow [56] and compute the mean squared error (MSE) (Equation (4.8))
between the generated disparity maps and the reference disparity maps and average the
error over all pixels in our dataset that have a reference value. Since this averaged MSE
can be distorted due to outliers, e.g., large MSE only for one particular image and low
MSEs for the remaining images, we additionally provide the average ranks with respect
to the four investigated scribbling strategies (∈ [1, 4]) and the average ranks with respect
to the five tested 2D-to-3D conversion systems (∈ [1, 5]). In case of the former, a rank is
computed for each 2D image, where 1 refers to the scribbling strategy with the smallest
and 4 to the scribbling strategy with the largest MSE for a particular image. These ranks
are averaged over the entire dataset to obtain the corresponding average rank. The ranks
with respect to the 2D-to-3D conversion systems are computed analogously.

6.2.2 Scribble Generation

In our evaluation study scribble-based annotations are performed automatically instead of man-
ually by a user. Inspired by [76], we simulate different users that take on different scribbling
strategies, i.e., placing scribbles of different sizes at different positions in the 2D images. The
basic idea behind our scribble generation algorithm is to generate them based on the GT of a 2D
image. Similar to users who annotate a 2D image with scribbles of constant disparity, we first
abstract its GT by reducing it to several layers (fusing several disparities to one). Likewise, in our
experience3, a user who is faced with the task of annotating 2D content with disparity scribbles
often follows a similar pattern: Typically, a user focuses on drawing a few rough scribbles to
indicate the main disparity layers in the scene. The starting point of this process is either the
annotation of the object(s) farthest away or the annotation of the object(s) closest to the camera,
as a base layer. This base layer often acts as a reference for selecting the disparities for further
scribbles. This means, users often draw scribbles following a (descending or ascending) disparity
order, using the previously drawn scribbles as a reference for the choice of the next disparity.
On a related note, it is worth mentioning that this pattern conforms with observations that were
made in cognitive studies [75, 155]. These studies indicate that assessing one point as closer or
farther from the camera than another point can be considered a simple and natural task. The
range of the GT (Figure 6.2 b)) is reduced to, on the average, seven distinct values per image

3Our experience is based on performing scribble-based annotation for 2D-to-3D conversion on multiple occasions,
including to generate the results shown in this thesis, and discussing the process of annotating 2D content with students
who were faced with the same task. Unfortunately, no user study could be found in the literature to further validate our
experiences. We believe that such a study would be an interesting topic for future work.



112 Chapter 6. Evaluation of 2D-to-3D Conversion Systems in Conjunction with User Input

Figure 6.2: Scribble generation and scribbling strategies. a) 2D image (Baby1 [134]), b) its GT
and c) GT with reduced range. Bright fore- and dark background, missing GT: black. Color-coded
disparity regions in d) have a single disparity in c). Regions have different colors in d). In e)-h),
we automatically place a scribble (black) in each region. Scribbles follow different scribbling
strategies: e) point scribbles, f) line scribbles, g) expert scribbles and h) border scribbles.

(Figure 6.2 c)). This results in spatially connected disparity regions that each exhibit a single
disparity in our reference solutions (Figure 6.2 d)) and mimic the main layers that a user would
annotate. These regions are the foundation of our scribble generation process. Using different
scribbling strategies, we automatically place a scribble in each of these regions if GT is provided
for them. Figure 6.2 e)-h) gives an overview of the considered scribbling strategies, i.e., point
scribbles (PS), line scribbles (LS), expert scribbles (ES) and border scribbles (BS). Below we
discuss their characteristics and their generation.

Point scribbles (PS) refer to the most minimalistic scribbling strategy in our evaluation study.
Similar to [76], our simulated novice user places a brush in the form of a dot with a
maximum size (radius of eight pixels) in the middle (i.e., centroid or closest pixel to it
within the region) of each disparity region (e.g., regions in Figure 6.2 d) and PS in e)). Thus,
this scribbling strategy would be effortless when performed by an actual user considering
two aspects: (1) the low number of marked pixels and (2) the distance of each scribble from
object borders. Concerning the latter, Kohli et al. [76] observed that aiming for precise
annotations close to object borders is perceived as a hard task. However, the small number
of marked pixel colors might not be enough to properly define a scribble in terms of the
underlying pixel’s color distribution.

Line scribbles (LS) follow a scribbling strategy that we often observed in the literature of both
fields, 2D-to-3D conversion and interactive segmentation. Many researchers, e.g., [41, 56,
76, 92, 117, 118, 125, 163], draw scribbles in form of lines that spread over a large extent
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Figure 6.3: Frequently employed scribbling strategy. Independent of the scribbles’ color-codings
and meanings, user-centric systems, such as a) [163], b) [118], c) [56] and d) [125], are often
initialized by scribbles in form of lines that are placed in the middle of objects.

Figure 6.4: Illustration of automatic generation of line scribbles. a) Disparity region for which
we want to generate a line scribble (white). b) Minimally connected stroke (white) obtained by
thinning. c) Segmentation of this stroke into line segments, i.e., branches (color-coded), which
are subsequently removed in ascending order of their length. d) The shortest branch was removed
(orange arrow). This process is repeated until the minimally connected stroke is branch-free.
e) Final line scribble (white), i.e., dilated branch-free minimally connected stroke.

of an object and are placed approximately in its middle (Figure 6.3). While, to the best
of our knowledge, the reasons for the frequent choice of this scribbling strategy are not
discussed in the literature, we suppose it is also motivated by its simplicity. As discussed
above, placing scribbles in the middle of objects is less labor-intensive than near their
borders. Contrary to PS, LS cover more pixels that contain potentially more colors and
provide more spatial support. Regardless of our supposed reasons, perhaps this scribbling
strategy simply feels more natural to users than other strategies. The frequent choice of
this scribbling strategy makes it worth to integrate it in our evaluation study. To this end,
we first apply a thinning algorithm [80] (Figure 6.4 a) and b)) and then iteratively remove
branches of the obtained minimally connected stroke in ascending order of their length
(Figure 6.4 c) and d)). Finally, the branch-free stroke is dilated. As a result (Figure 6.4 e)
and Figure 6.2 f)), we obtain similar scribbles as observed in the literature (Figure 6.3).

Expert scribbles (ES) are closely related to LS. While LS cover more pixels than PS, they still
not necessarily cover differently colored pixels within disparity regions. More experienced
users, i.e., expert users, might draw scribbles deliberately across differently colored pixels
within a region. In fact, we observed this strategy in the literature. For instance, in
Figure 6.3 a), the cartoon characters are annotated with “LS” that have additional branches
to areas with different colors (e.g., scribble on red costume with branch to black glove).
Based on this observation, we extend LS to ES by adding similar branches. Specifically,
for each LS (Figure 6.5 a)), we perform a rudimentary color segmentation by comparing
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Figure 6.5: Illustration of automatic generation of expert scribbles. a) Input image with a
single line scribble (black). b) Disparity region (white) for which the scribble was generated.
c) Rudimentary color segmentation based on the line scribble. Pixels within the disparity region
with colors covered by the line scribble are white, remaining pixels are black. d) The expert
scribble (black) covers more colors than the line scribble in a).

Figure 6.6: Border scribbles in the literature. Independent of the color-coding and meaning of
the scribbles, user-centric systems, such as a) [163], b) [117], c) [125] and d) [79], are often
initialized with scribbles that are placed near object borders (pink arrows).

the color model obtained from pixels covered by the scribble with the color model obtained
from the remaining pixels in the same disparity region (Figure 6.5 b)). This comparison
seperates pixels with colors covered by the scribble from pixels with colors not covered by
the scribble (Figure 6.5 c)). To obtain our final ES, we add branches that start in areas of the
latter pixels and follow the shortest path to the scribble. When comparing LS (Figure 6.5 a)
and Figure 6.2 f)) with corresponding ES (Figure 6.5 d) and Figure 6.2 g)), it is evident
that ES cover a larger variety of colors than LS.

Border scribbles (BS) are used in our (for users) most labor-intensive scribbling strategy. With
BS, users roughly trace object borders using scribbles, which often resemble (closed)
circular lines. This strategy can be observed in the literature (e.g., Figure 6.6, pink arrows).
BS are more labor-intensive than the previous discussed scribbling strategies concerning
two aspects: (1) the larger number of marked pixels and (2) the closeness of the scribbles to
object borders. However, no additional efforts to cover different colors are made. A unique
advantage of BS over PS, LS and ES is that BS further constrain the solution of conversion
systems close to object borders and, thus, potentially increase the accuracy of the results
near them. We simulate this scribbling strategy by shifting the borders of the disparity
regions closer to their center using morphological operators. As shown in Figure 6.2 h),
the resulting BS are closed circular lines that follow region borders.
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6.2.3 Investigated Semi-automatic 2D-to-3D Conversion Systems

Our evaluations focus on semi-automatic 2D-to-3D conversion systems that are based on scribble-
based user annotations. In particular, we investigate five systems: (1) our segmentation-based
conversion (GS+P, Chapter 4), our CVF-based conversion with the assignment schemes (2) DB
(CVF (DB), Chapter 5) and (3) WTA (CVF (WTA), Chapter 5), (4) our implementation of
Guttmann et al.’s algorithm [56] (LSE) and (5) the conversion system by Phan et al. [118]
(GC+RW). They were discussed in detail in Chapter 4, Chapter 5 and Section 2.2. It is clear
from previous chapters, that these systems specifically, and semi-automatic 2D-to-3D conversion
systems in general, follow two basic steps: (i) the annotation of 2D content with sparse disparity
(or depth) information and (ii) the propagation of this information to the remaining pixels. Below,
we briefly recap the tested systems and discuss their most important similarities and differences,
as well as aspects that should be noted in the context of our evaluation study.

The first step in semi-automatic 2D-to-3D conversion is the annotation of 2D content. While
the tested conversion systems are all based on scribble-based user annotations that directly
encode the disparities of the marked pixels, the encoding of their scribbles varies. Specifically,
while GS+P and LSE support scribbles that contain multiple disparities, this is not the case for
CVF (WTA), CVF (DB) and GC+RW. In our evaluations, we equal the former systems to the
latter systems by also using a single disparity per scribble. As mentioned above, all tested systems
are initialized with GT-derived disparities at scribble positions instead of relying on the respective
encoding of the scribbles. Hence, in our study, the tested systems are all based on the exact same
user input. A mutuality concerning the scribble-based annotations for all five semi-automatic
2D-to-3D conversion systems is that annotated 2D content is processed after all scribbles are
drawn4. Thus, our evaluation study abstains from simulating an interactive user who follows a
progressive annotation strategy (such as in [76]). Contrary, we focus on the effect of different
scribble strategies in the final 2D-to-3D conversion results.

The second step and principal part of semi-automatic 2D-to-3D conversion is the propagation
of scribble disparities to the remaining pixels. Since our evaluations are performed on a dataset
of images (as opposed to videos), our study uses image versions of the 2D-to-3D conversion
systems mentioned above. For GS+P5, this means that the propagation is performed jointly
with a graph-based segmentation of a single image [43, 53] instead of a video segmentation
that additionally connects pixels across frames. Note that the image version also includes the
region merging step [53] that uses richer similarity measures than local per-pixel similarities as
in [43]. During this segmentation spatially connected and similar (color) pixels are merged to
segments following local, greedy decisions (that satisfy global properties [43, 53]) and disparities
are propagated. The subsequent interpolation and refinement steps are performed on a single
image and not across multiple frames of a video. Thus, in the image version their main task
is not temporal disparity interpolation, but the interpolation of disparity within segments. For
GS+P we use the following parameters: segmentation parameters {τ = 0.3, Tminsize = 5,
7 iterations}, segment-wise filter parameters {rs = 9, ε = 0.0001} and filter parameters for
refinement {rs = 3, ε = 0.0001}. The color histograms have 20 bins per color channel (LAB).

4Users still have the option to change their annotations and update the previously obtained conversion results.
This, however, involves the recomputation of the entire solution.

5We use the un-optimized C++ implementation of the segmentation-based propagation algorithm in Chapter 4.
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While GS+P is based on an automatic segmentation algorithm, CVF (WTA) and CVF (DB)
are an extension of an interactive object segmentation algorithm (Chapter 5). GS+P directly
propagates disparities between immediately connected (groups of) pixels with similar appearance
(i.e., color). It neither explicitly models the appearance of specific pre-defined labels (i.e., dis-
parities) nor considers the similarity of pixels to them. Contrarily, our CVF-based algorithms
view propagation as a label-based optimization problem, in which the appearance of a scribble’s
pixels (i.e., set of all pixels marked by a specific scribble) explicitly models its given disparity.
They then compute (color) similarities, between individual pixels and these color models, to
obtain probabilities for the models’ associated disparities. A local filtering technique aggregates
probabilities to approximately solve the label-based optimization problem [125]. This approach
can bypass propagations across large distances. The image version computes probabilities based
on color similarities to multiple user-drawn scribbles (i.e., MS), spatial closeness to these scrib-
bles (i.e., STC) and employs a 3D connectivity constraint (i.e., CON). Since our evaluation
study focuses on 2D images, motion related components of the algorithm, such as temporal
disparity interpolations (i.e., DC -tM and -sM), motion guided filtering (i.e., +TC) and motion
segmentation-based scribble matching and grouping are disabled. Throughout this evaluation
study, we use the following parameter set: CVF parameters {rs = 10, ε = 0.0016}, DB parame-
ter n = 2, STC parameter tclose is automatically set to the maximal possible spatial distance in
each image. The color histograms have 32 bins per color channel (RGB).

Phan et al. [118] provided us with an image version of their 2D-to-3D conversion system
(GC+RW). Like CVF (WTA) and CVF (DB), it is based on an interactive object segmentation
algorithm, i.e., [19]. In [118], the segmentation result is, as an additional constraint, incorporated
into a global edge-aware interpolation [51] to avoid over-smoothing of edges in the conversion
results. We use the constants and parameters that were suggested by the authors of [118].

Our implementation of Guttmann et al.’s 2D-to-3D conversion system [56] (LSE) expresses
the propagation in terms of a continuous global function that is solved by a standard minimization
technique [84]. In some similarity to GS+P, disparities are propagated between neighboring pixels
without explicitly considering global color models as in CVF (WTA), CVF (DB) or GC+RW.
Unlike the system’s original video version, its image version only employs spatial smoothness
constraints that are based on color similarity of neighboring pixels and disables all motion related
components. In our evaluation study, we use the parameters suggested in [56].

In summary, all tested systems implement the same key assumption, i.e., that pixels with
similar colors are likely to have similar disparities as opposed to pixels with strong color contrast.
While CVF (WTA), CVF (DB) and LSE compute these color similarities in the RGB color
space, GS+P and GC+RW use the LAB color space. CVF (WTA) and CVF (DB) determine
color similarities using color histograms (i.e., color models). GC+RW, GS+P and LSE express
color similarly (additionally) in terms of absolute color differences between individual pixels.
Furthermore, all tested systems assume that spatially close pixels are more likely to have a similar
disparity than spatially distant pixels, whereas spatial closeness is differently realized by the
tested systems. GS+P, LSE and GC+RW propagate disparities only between spatially connected
immediate neighbor pixels. Thus, these systems indirectly enforce that only pixels that are
spatially connected to a specific scribble are influenced by its disparity. Contrary, CVF (WTA)
and CVF (DB) directly reduce the probability of assigning spatially distant pixels (defined by
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Table 6.1: Quantitative evaluation of conversion accuracy. The tested 2D-to-3D conversion
system are used with different scribbling strategies. The MSEs are computed by comparing the
conversion results with their reference solutions and are multiplied by 100. Red superscripts are
average ranks with respect to the conversion systems. Blue subscripts are average ranks with
respect to the scribbling strategies. Low ranks and MSEs indicate more accurate results than large
ranks and MSEs. Errors for images from [134] and from [27] are listed separately.

MSERank (systems)
Rank (scribbles) images from [134] images from [27]

BS ES LS PS BS ES LS PS
GS+P 0.011.0

1.1 0.021.5
2.0 0.042.2

2.9 0.122.9
4.0 0.061.5

1.0 0.151.5
2.0 0.402.3

2.8 10.313.8
4.0

GC+RW [118] 0.012.8
1.1 0.042.9

2.0 0.052.8
2.9 0.153.2

4.0 0.092.8
1.0 0.232.8

2.0 0.252.8
3.0 8.052.8

4.0
CVF (WTA) 0.023.4

1.2 0.032.9
1.8 0.052.8

3.0 0.183.5
4.0 0.202.5

1.3 0.483.0
1.8 0.532.8

3.0 4.222.0
4.0

CVF (DB) 0.044.7
1.6 0.053.9

1.7 0.063.3
2.7 0.182.9

4.0 1.153.8
1.5 1.173.3

2.0 1.142.8
2.5 4.762.0

4.0
LSE [56] 0.013.1

1.0 0.043.9
2.0 0.063.9

3.0 0.132.5
4.0 0.394.5

1.0 2.144.5
2.0 3.224.5

3.0 10.704.5
4.0

a spatial distance transform [17] using Chessboard distance) to a disparity of a scribble by
employing a spatial closeness (i.e., STC) and a connectivity (i.e., CON) constraint. Compared
to GS+P, LSE and GC+RW, their connectivity constraint is more general, i.e., it allows spatial
connections in the background (taking occlusions into account). As mentioned above, GS+P and
LSE do not model explicitly the appearance of each scribble, whereas in CVF (WTA), CVF (DB)
and GC+RW related color models are used. The systems further differ in their performed
smoothing. While CVF (WTA) refrains from smoothing, CVF (DB) blends the two most probable
disparities for each pixel. LSE and GC+RW globally smooth neighboring disparities with similar
colors, whereas GC+RW additionally relies on segmentation to reduce over-smoothing. GS+P
takes on a similar approach by locally smoothing disparities within segments.

6.3 Experimental Results and Evaluation

We compare the 2D-to-3D conversion results for 2D images of our dataset (Section 6.2.1) with
their reference solutions. The results were obtained by the tested 2D-to-3D conversion systems
(Section 6.2.3), using different scribbling strategies (Section 6.2.2). In the first experiment (Sec-
tion 6.3.1), we compare the accuracy of results from different systems and scribbling strategies.
The second experiment (Section 6.3.2) focuses on their robustness to small scribble perturbations.
In our third experiment (Section 6.3.3) the tolerance to inaccuracies in scribble annotations is
investigated. The fourth experiment (Section 6.3.4) is an in-depth series of evaluations that
considers the content of the 2D images. More precisely, for each system, the ideal scribbling
strategy for different types of regions (e.g., multicolored or homogenous) is investigated.

6.3.1 Conversion Accuracy

In our first experiment, we compare the results obtained by the tested 2D-to-3D conversion
systems using different scribbling strategies. Specifically, each 2D image from our dataset is
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Figure 6.7: Visual evaluation of conversion results. a) Input image (Ambush2 from [27]) with
scribbles (black) and c) reference solution. b) Results of the tested 2D-to-3D conversion systems
when using different scribbling strategies (BS, ES, LS, PS). Red numbers are the ranks of the
tested 2D-to-3D conversion systems. Blue numbers are the ranks of the scribbling strategies.

automatically annotated exclusively using the scribbling strategies6 PS, LS, ES and BS and
processed by five tested conversion systems, i.e., GS+P, GC+RW [118], CVF (WTA), CVF (DB)
and LSE [56]. We compare their results with their reference solutions and show the resulting
MSEs in Table 6.1 and Figure 6.7. Table 6.1 further lists the average ranks. The red superscripts
are average ranks (∈ [1, 5]) with respect to the conversion systems (per scribbling strategy). The
blue subscripts are average ranks (∈ [1, 4]) of the scribbling strategies (per system).

Let us first focus on the scribbling strategies. When comparing the errors in the rows of
Table 6.1, BS is preferred by the tested systems. Two factors explain BS’ good performances.
BS have a larger amount of marked pixels and are especially favorable to conversion systems
that employ strict connectivity constraints. In particular, BS can for GS+P, CG+RW and LSE
act as a “barrier“ that avoids erroneous assignments within areas that are enclosed by BS. In our
CVF-based systems, which support connectivity paths that continue in the background, scribbles
have a potentially larger area of influence. For them, BS only reduces errors within areas enclosed
by BS. When averaging the scribbles’ ranks in Table 6.1 (blue), BS are followed by ES, LS and
PS. ES cover differently colored pixels and are spatially larger than LS and PS. ES typically yield
plausible conversions, which, however, might exhibit errors near borders between regions with
similar colors (Figure 6.7 b), snow). In case of LS and PS, errors are often related to object colors
that were not covered by scribbles (Figure 6.7 b), PS, head) or their color ambiguities.

6First versions of PS and LS (i.e. DS and TS) were used in Section 4.4 to annotate and convert 2D images to 3D
using GS+P. Then, the influence of GS+P’s region merging step on the conversion quality was evaluated.
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Table 6.1 also compares the 2D-to-3D conversion systems per scribbling strategy (i.e., com-
parison of errors in columns). The errors of a system vary when using different scribbling
strategies. Furthermore, the systems’ rankings differ between images from [134] and from [27]
(e.g., PS). Nonetheless, overall our evaluations indicate that the tested conversion systems that
use segmentation algorithms (GS+P, GC+RW, CVF (WTA) and CVF (DB)) perform better than a
system that solely relies on edge-aware interpolation (LSE). Our segmentation-based conversion
from Chapter 4, i.e., GS+P, performs best for most scribbling strategies (BS, ES and LS). When
averaging the systems’ ranks in Table 6.1 (red), GS+P is followed by GC+RW, CVF (WTA),
CVF (DB) and finally LSE. In this context, the second and third best performing conversion
systems, i.e., GC+RW and CVF (WTA), build upon interactive segmentation algorithms. While
CVF (WTA) focuses on direct assignments of scribble disparities to pixels, GC+RW additionally
smoothes them using edge-aware interpolation. Thus, contrary to CVF (WTA), GC+RW’s results
contain disparity falloffs which are desired for rounded, but undesired for fronto-parallel objects
(e.g., Figure 6.7 b), head). The two worst performing conversion systems are CVF (DB) and LSE.
CVF (DB)’s disparity blending approach (i.e., DB) averages the two most probable disparities
per pixel. This results in (small) quantitative errors at each pixel (which add up to large MSEs
and leads to large average ranks) and a sensitivity to overlapping color models of scribbles.
Being based on a segmentation algorithm, CVF (DB) captures disparity edges at object borders
(e.g., Figure 6.7 b)). This is not the case for LSE, which generally and especially for sparser
scribble inputs (PS) over-smoothes its results (e.g., Figure 6.7 b)). In this context, it should
be noted that images from [27] (as opposed to images from [134]) contain scenes with large
foreground objects on distant backgrounds and typically fewer scribbles.

Overall, this first experiment leads to three important observations concerning the conversion
accuracy: (1) We have confirmed that scribbles varying in length and placement affect the results
of the tested 2D-to-3D conversion systems and, thus, should be investigated further. Generally,
it pays off to put more effort into the annotation process, i.e., by covering different colors or
drawing larger scribbles (using ES or BS). Especially systems that employ a stricter spatial
connectivity constraint (GS+P, LSE and GC+RW) as opposed to a more general 3D connectivity
constraint (CVF (DB) and CVF (WTA)) have shown to exploit the additional spatial support of
our most laborious scribbling strategy (BS). (2) The performance of the tested systems not only
depends on the placement of the used scribbles, but also on the 2D content. Different images
(areas) might call for different scribbling strategies, while for other images (areas) the scribbling
strategy might not matter. In the following experiments, this aspect will be further investigated.
(3) Our segmentation-based algorithm (GS+P) clearly outperforms the 2D-to-3D conversion
by solely global edge-aware interpolation (LSE). Furthermore, we have often observed better
performances for systems that integrate segmentation algorithms in their conversion process (GS+P,
GC+RW, CVF (WTA) and CVF (DB)) as opposed to the system that solely relies on edge-aware
interpolation and does not incorporate a segmentation algorithm in its conversion process (LSE).

6.3.2 Robustness to Scribble Perturbations

In our second experiment, we address the robustness of the tested systems (Section 6.2.3) to small
scribble perturbations for each scribbling strategy (Section 6.2.2). To this end, we automatically
generate two additional sets of annotations per scribbling strategy. To obtain the first set of
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Table 6.2: Quantitative evaluation of robustness to scribble perturbations (scribble comparison).
Performance changes between systems’ results from scribbles’ original positions (i.e., 0) and
each of their shifted positions (i.e., by 10 and 20 pixels) are compared. The table ranks scribbling
strategies with respect to these changes per 2D-to-3D conversion system (comparing scribbles
column-wise and separately within 0 − 10 and within 0 − 20). Low ranks indicate robuster
scribbles than large ranks. Ranks for images from [134] and from [27] are listed separately.

Avg. Ranks images from [134] images from [27]
(scribble CVF GS CVF LSE GC+ CVF GS CVF LSE GC+

comparison) (DB) +P (WTA) RW (DB) +P (WTA) RW
BS 0− 10 2.7 1.9 1.9 2.7 2.7 3.5 2.0 2.5 2.8 1.0
ES 0− 10 1.7 2.6 2.1 2.3 1.9 2.3 2.5 2.3 2.3 2.8
LS 0− 10 2.1 3.1 2.4 2.6 2.5 2.0 2.8 1.5 3.0 2.8
PS 0− 10 3.5 2.4 3.5 2.4 2.9 2.3 2.5 3.8 2.0 3.5
BS 0− 20 2.7 2.1 2.3 3.6 3.1 2.5 2.3 2.0 3.5 1.3
ES 0− 20 2.2 2.9 2.9 2.5 1.7 2.8 2.3 2.0 2.3 3.0
LS 0− 20 2.2 2.1 1.9 2.1 2.3 1.3 2.5 2.0 2.0 2.5
PS 0− 20 2.9 2.8 2.9 1.8 2.9 3.5 3.0 4.0 2.3 3.3

Table 6.3: Quantitative evaluation of robustness to scribble perturbations (system comparison).
Performance changes between systems’ results from scribbles’ original positions (i.e., 0) and
each of their shifted positions (i.e., by 10 and 20 pixels) are compared. The table ranks 2D-to-3D
conversion systems with respect to these changes per scribbling strategy (comparing the systems
row-wise and separately within 0− 10 and within 0− 20). Low ranks indicate robuster systems
than large ranks. The ranks for images from [134] and from [27] are listed separately.

Avg. Ranks images from [134] images from [27]
(system CVF GS CVF LSE GC+ CVF GS CVF LSE GC+

comparison) (DB) +P (WTA) RW (DB) +P (WTA) RW
BS 0− 10 4.4 3.2 2.5 2.3 2.5 4.0 3.0 3.0 3.8 1.3
ES 0− 10 3.5 4.1 3.1 2.2 2.1 4.0 3.0 2.8 3.3 2.0
LS 0− 10 3.2 4.0 3.3 2.3 2.2 3.5 3.8 2.5 3.5 1.8
PS 0− 10 3.9 2.7 3.9 2.1 2.5 2.5 2.5 3.0 3.0 4.0
BS 0− 20 3.0 3.3 3.1 3.3 2.3 3.8 2.8 2.5 4.3 1.8
ES 0− 20 3.0 3.9 3.7 2.8 1.6 3.3 2.5 2.3 3.8 3.3
LS 0− 20 3.1 3.9 3.2 2.6 2.2 3.0 3.8 2.5 3.0 2.8
PS 0− 20 3.2 3.4 3.8 2.1 2.5 2.8 3.8 2.8 2.5 3.3

annotations, we shift each scribble within a region (Section 6.2.2) by maximal 10 pixels (i.e., five
to the right and five to the bottom) from their original positions. For the second set a shift by
maximal 20 pixels (i.e., 10 to the right and 10 to the bottom) from their original positions is
performed (e.g., Figure 6.8 a)). When performing these position shifts, we maintain the disparity,
connectivity and the number of pixels of each scribble. The two additional sets of annotations are
subsequently used to convert the images in our dataset (Section 6.2.1) with the tested 2D-to-3D
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Figure 6.8: Example results after scribble perturbations (Temple3 from [27]). a) Input image
with LS shifted by 0 and 10 pixels, zoom-ins (green) that show black LS on transparent image,
and reference solution. b) 2D-to-3D conversion results from GS+P, LSE [56], GC+RW [118],
CVF (WTA) and CVF (DB). GS+P’s results exhibit the visually largest change. Green arrow: A
perturbation-caused annotation of mixed pixels (zoom-ins) leads to propagation of foreground
disparity into the background. Yellow arrows: Similar error with initial scribbles (no shift).

conversion systems. Table 6.2 and Table 6.3 focus on the change that was observed between
these results. Specifically, Table 6.2 lists average ranks that compare the scribbling strategies and
were computed from the MSE changes (i.e., absolute differences) between the results generated
from original and shifted scribble inputs. These ranks (∈ [1, 4]) are computed within each set
of shifted annotations (comparing the scribbling strategies separately within 0− 10 and within
0− 20) and for each system. Table 6.3 gives an analogous ranking (∈ [1, 5]) with respect to the
2D-to-3D conversion systems. Below, we first discuss the ranking of the scribbling strategies and
then the ranking of the conversion systems.

In Table 6.2, PS has large average ranks (i.e., is not robust to perturbations) for most systems
(CVF (DB), GS+P, CVF (WTA) and GC+RW). However, for LSE, PS’ severely over-smoothed
results are very similar to each other, leading to PS’ low average ranks with LSE. In the case of
GS+P, BS obtain the lowest average ranks with images from ([134] and [27]), which indicates that
GS+P is most robust to scribble perturbations when using BS. In most cases, the performances of
the scribbling strategies in Table 6.2 vary across conversion systems and datasets. Furthermore, in
some cases the scribbles’ average ranks within a dataset are very similar to each other (e.g., LSE,
images from [134], PS 0 − 10: ∈ [2.3, 2.7]). For these reasons, we could not identify a single
scribbling strategy that is throughout most robust to scribble perturbations.

Table 6.3 compares the robustness of the tested 2D-to-3D conversion systems to scribble
perturbations (i.e., comparison of ranks in rows). When averaging these ranks over all scrib-
bling strategies, CVF (DB) is most sensible to scribble perturbations. It is followed by GS+P,
CVF (WTA), LSE and finally GC+RW, the on average most robust system. Thus, in this evalua-
tion conversion systems that perform global interpolations (LSE and GC+RW) are more robust to
scribble perturbations than systems that are based on local decisions or smooth locally (GS+P,
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CVF (WTA) and CVF (DB)). As shown in Figure 6.8 b), for LSE and GC+RW scribble pertur-
bations visually manifest as subtle changes of disparity falloffs in their results. Note that in the
case of LSE, this is related to its (severely) over-smoothed conversion results. In this context, it is
worth mentioning that LSE is less robust for scenes (from [27]) that contain large foreground
objects on distant backgrounds than for cluttered scenes (from [134]) with lower disparity differ-
ences between objects. In the former scenes, differences between LSE’s over-smoothed results
carry quantitatively more weight. GS+P, CVF (WTA) and CVF (DB) are, in most cases (note the
mentioned exception of LSE and images from [27]), less robust than LSE and GC+RW, and can be
considered more local than those systems in certain aspects. Shifting scribble positions involves
the additional coverage or exclusion of object colors by scribbles. For our CVF-based systems
such changes affect the scribbles’ color models and might alter local disparity assignments in
their results. Since CVF (DB)’s local DB approach is sensitive to changes in these models,
CVF (DB)’s conversion results typically change after shifting the scribbles. GS+P’s sensitivity to
scribble perturbations comes from the greedy nature of its segmentation algorithm [53], which
is initially based on color similarities between individual pixels. For GS+P shifted scribbles at
object borders and colors that are (locally) not covered by scribbles after their perturbation might
lead to erroneous assignments of large areas (Figure 6.8 b), green arrow). This can be avoided by
using BS, which increase the robustness of GS+P (Table 6.2).

Overall, in this second experiment two main observations concerning the robustness to small
perturbations of the scribble input were made: (1) The robustness to scribble perturbations varied
across 2D-to-3D conversion systems and datasets. This indicates the choice of scribbling strategy
alone is not a major dependency for a system’s robustness. Analogously, no single conversion
system was throughout most robust. (2) The amount and type of smoothing emerged as a
crucial factor in the quantitative robustness-evaluation. For systems that perform smooth global
interpolations (LSE and GC+RW), scribble perturbations manifested in changes of disparity
falloffs. For systems that are based on local decisions or smooth locally (GS+P, CVF (WTA)
and CVF (DB)), large areas might be (abruptly) assigned to different disparities than before the
scribble perturbation. The latter changes were visually and quantitatively more noticeable.

6.3.3 Error Tolerance

In our third experiment, we focus on the tolerance against inaccurate scribble annotations. In
practice user annotations are not necessarily accurate, e.g., foreground scribbles might accidentally
cover some pixels that should be assigned to background disparities. We simulate inaccurate
user annotations by adding 10, 20 and 50 pixels that actually should be assigned to a different
disparity to each scribble. In order to maintain the connectivity of a distorted scribble, we first
add a minimal connected branch (i.e., width of one pixel) that connects the original scribble in a
region (Section 6.2.2) to the closest pixel on the region border (e.g., Figure 6.9 a), zoom-ins). The
set of altered scribbles, i.e., with the additional branch but without erroneous assignments, serves
as baseline in this experiment. Subsequently, we generate three additional sets of annotations
per scribbling strategy by adding 10, 20 and 50 pixels from neighboring regions (i.e., erroneous
assignments) to these branches. By removing the same amount of correctly assigned pixels
as were added, the number of pixels per scribble is maintained. In summary, we obtain four
sets of annotations per scribbling strategy, i.e., the set of baseline scribbles and three sets of
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Table 6.4: Quantitative evaluation of error tolerance. This table compares performance changes
between the systems’ results obtained with undistorted (i.e., 0) scribbles and their distorted
versions with 10, 20 and 50 erroneous pixels. Systems and scribbles are ranked according to
these changes (within each set of distorted annotations). Average (avg.) ranks of the scribbling
strategies (left, comparison of ranks in columns) and of the systems (right, comparison of ranks
in rows) are shown. Low avg. ranks indicate more error-tolerant results than large avg. ranks.

Avg. Ranks
GS+P CVF GC+ CVF LSE

sc
ri

bb
le
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m
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(DB) RW WTA
BS 0− 10 1.4 1.8 1.4 1.4 1.3
ES 0− 10 2.5 2.4 2.2 2.2 2.5
LS 0− 10 2.8 2.2 2.4 2.6 2.5
PS 0− 10 3.3 3.6 4.0 3.7 3.7
BS 0− 20 1.4 1.5 1.4 1.4 1.3
ES 0− 20 2.1 2.4 2.2 2.1 2.5
LS 0− 20 3.1 2.2 2.4 2.7 2.7
PS 0− 20 3.4 3.9 4.0 3.9 3.5
BS 0− 50 1.2 1.6 1.2 1.3 1.2
ES 0− 50 2.1 2.1 2.2 2.2 2.1
LS 0− 50 3.1 2.5 2.6 2.6 2.6
PS 0− 50 3.4 3.7 4.0 3.9 4.0

Avg. Ranks system comparison
GS+P CVF GC+ CVF LSE

(DB) RW WTA
BS 0− 10 3.4 3.4 2.7 2.9 2.6
ES 0− 10 4.2 3.1 3.0 2.2 2.4
LS 0− 10 4.2 2.8 3.0 2.7 2.3
PS 0− 10 3.6 3.3 3.2 2.9 2.0
BS 0− 20 3.2 3.9 2.9 2.9 2.1
ES 0− 20 4.2 3.5 3.0 2.1 2.2
LS 0− 20 4.3 2.9 2.7 2.9 2.2
PS 0− 20 3.6 3.3 3.6 3.1 1.4
BS 0− 50 3.1 3.6 3.6 2.6 2.1
ES 0− 50 4.1 3.0 3.1 2.4 2.4
LS 0− 50 4.3 2.9 3.3 2.6 1.9
PS 0− 50 3.3 2.9 3.6 3.1 2.2

distorted scribbles with 10, 20 and 50 erroneously annotated pixels per scribble. These 16 sets
of input scribbles per image are processed by the five tested 2D-to-3D conversion systems. To
reduce the amount of performed conversions (i.e., 80 per image), we use a smaller version of our
dataset which contains only 14 images (i.e., 11 images from [134] and three from [27]) instead of
originally 19 images (Figure 6.1).7 Table 6.4 lists average ranks that were computed from the
MSE changes (i.e., absolut differences) that are observed when comparing results obtained from
the baseline scribbles with results obtained from the distorted scribbles.

In Table 6.4 (left, comparison of ranks in columns per distortion), BS exhibit the lowest
ranks and are followed by ES, LS and finally PS. While BS clearly emerge as the most error-
tolerant scribbling strategy, PS is the most sensitive one. This observation can be explained by
PS’ small amount of annotated pixels and, thus, their smaller ratio of correctly to erroneously
annotated pixels per scribble. Besides the larger amount of annotated pixels, BS have an additional
advantage over the remaining scribbling strategies. As mentioned in Section 6.3.1, the systems’
connectivity constraints avoid (GS+P, GC+RW and LSE) or reduce (CVF (WTA) and CVF (DB))
erroneous propagations into BS’ enclosed areas. Thus, for BS errors are more or less constrained
to pixels between the areas enclosed by BS, while scribbling strategies that are closer to regions’
centers (e.g., PS) leave larger areas in which erroneous propagations might spread.

7The five images that were removed from our full dataset only had a small contribution in terms of content
diversity to the full version of the dataset (Figure 6.1). For instance, in case of the removed images Barn2, Poster and
Venus, a very similar image, i.e., Barn1, is still contained in the smaller version of our dataset.
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Figure 6.9: Visual evaluation of error tolerance (Ambush2 from [27]). a) Input image with LS
and its reference solution. Foreground: bright, background: dark. LS are distorted by 0, 10, 20
and 50 erroneously (err.) annotated pixels per scribble. Zoom-ins on the input provide a detailed
view on the (distorted) scribbles for two image areas, which are marked with solid and dotted
lines, respectively. b) 2D-to-3D conversion results from CVF (WTA), LSE [56], GC+RW [118],
GS+P and CVF (DB). Note the distortion-caused errors close to the person’s hand.

Table 6.4 (right) ranks the tested 2D-to-3D conversion systems according to their distortion-
caused changes (comparison of ranks in rows). When averaging Table 6.4 (right) over scribbling
strategies, LSE is the most error-tolerant system among the tested ones. As in Section 6.3.2,
LSE’s low ranks in Table 6.4 (right) are related to its generally over-smoothed conversion results.
Specifically, the introduced distortions disappear in LSE’s already inaccurate results (Figure 6.9).
LSE is followed by CVF (WTA), GC+RW, CVF (DB) and finally GS+P. Thus, among the
remaining tested conversion systems, systems that use color models (CVF (WTA), GC+RW and
CVF (DB)) are more error-tolerant than a system that propagates the disparity from individual
annotated pixels (GS+P). The mentioned color models explicitly model the disparity of each
scribble by the appearance (color) of all its scribble’s pixels (i.e., set of all pixels marked by a
specific scribble). With the support of a set of pixels, color models provide additional robustness
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against inaccurate annotations compared to propagations from single pixels (as in GS+P). The
results are further influenced by the systems’ smoothing components. In some similarity to
Section 6.3.2, CVF (DB)’s DB approach is sensitive to inaccurate annotations. With overlapping
color models due to inaccurate scribble annotations, the DB approach is typically less robust than
the WTA approach (Table 6.4, right). Analogue to Section 6.3.2, for GC+RW distorted scribbles
often cause different disparity falloffs in the conversion results compared to the results obtained
from the undistorted scribbles (e.g., Figure 6.9 b)). In the case of distorted scribbles, these falloffs
also include smooth, erroneous disparity propagations (e.g., Figure 6.9 b)).

Overall, this third experiment leads to two main findings concerning the tolerance to inaccurate
annotations: (1) We quantitatively confirmed that the error tolerance of the tested 2D-to-3D
conversion systems can be improved by using scribbling strategies that cover larger, differently
colored areas in 2D images and place scribbles closer to each other (e.g., BS). Especially,
scribbling strategies that are located close to object borders (BS) were able to avoid (GS+P,
GC+RW and LSE) or reduce (CVF (WTA) and CVF (DB)) erroneous annotations to spread
across large image areas. (2) We observed that systems that use color models (CVF (WTA),
GC+RW and CVF (DB)) are more error-tolerant than a system that propagates the disparity
from each single annotated pixel (GS+P). The seemingly best results in terms of error-tolerance
were obtained with the system that was generally less accurate (LSE). For LSE, the introduced
erroneous annotations disappeared in its already inaccurate (i.e., over-smoothed) results.

6.3.4 Content-aware Scribble Placement

It is clear from our previous evaluations that the used scribbling strategies in conjunction with
the 2D content influences the 2D-to-3D conversion result. Thus, this section presents a more
detailed accuracy evaluation that focuses on the ideal scribble placement in conjunction with
different regions in the 2D images. In particular, we investigate four types of image regions:
(1) homogenous regions that exhibit no or only few color variations, (2) multicolored regions that
contain different colors or color variations (e.g., texture), (3) regions with weak and, contrary,
(4) regions with strong region borders, that have similar and dissimilar colors as neighboring
regions, respectively. While homogenous regions are expected to be ideal for the 2D-to-3D
conversion based on color constancy assumptions, multicolored regions are more challenging in
this context. If a region is additionally bounded by weak borders, an erroneous propagation of
disparities across these borders might lead to errors in the 2D-to-3D conversion results. Contrary,
regions with strong borders are less likely to “leak“ into neighboring regions. To introduce these
four different region classes into our evaluation, we relate each region (from Section 6.2.2) in the
smaller version of our dataset (Section 6.2.1) to the region classes that were mentioned above.
Specifically, each region is classified into either a (1) homogenous or (2) multicolored region and
into either a (3) weak or (4) strong border region (e.g., Figure 6.10). The classifications are based
on low-level image features. Essentially, the distinction between (1) and (2) is based on squared
color gradients [6] and a region’s variance in 2D images. The distinction between (3) and (4)
depends on color gradients near their region borders. It should be noted that (4) strong border
regions are defined with respect to all neighboring regions. In summary, 86 percent of the pixels in
our dataset belong to regions with (3) weak borders and 14 percent of the pixels belong to regions
with (4) strong borders. When considering the division into (1) homogenous or (2) multicolored
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Figure 6.10: Region classification example. a) 2D image (Ambush2 from [27]). b) Its disparity
regions (Section 6.2.2): Each region has a unique color. c) Classified regions from b): Mul-
ticolored regions with strong borders (blue), homogenous regions with strong borders (red),
multicolored regions with weak borders (white), homogenous regions with weak borders (green).

Figure 6.11: Evaluation of content-aware scribble placement (multicolored regions). The
evaluated conversion results were generated by changing the scribbling strategy in multicolored
regions while keeping it constant (i.e., LS) in homogenous regions. Each plot compares the
conversion accuracy achieved with different scribbling strategies placed in multicolored regions.
These scribble rankings (color coded points) are computed per region (a)-d)) and per system.

regions, 9 percent and 91 percent of the pixels in the dataset belong to them, respectively. Given
the classification of the regions, we vary the scribbling strategy (Section 6.2.2) in a specific
region class (e.g., in all multicolored regions) while keeping the scribbles in the inverse region
class (e.g., in all homogenous regions) fixed (i.e., using LS as default scribbling strategy). The
resulting 13 sets of annotations per 2D image are used to convert the images with each tested
2D-to-3D conversion system (Section 6.2.3). The conversion results are compared to the images’
reference solutions to measure their conversion accuracy in Figure 6.11, Figure 6.12, Figure 6.14
and Figure 6.15. These figures show the average ranks of the scribbling strategies (color-coded
points) that were measured within each region class. They indicate the ideal scribbling strategy
for a specific (bold marked) region class (e.g., in Figure 6.11 for multicolored regions) and the
scribbling strategies’ effect on the inverse region class (e.g., in Figure 6.11 on homogenous
regions). In this manner, the evaluation results are discussed below.

Different scribbling strategies in multicolored regions. Figure 6.11 focuses on the choice of
scribbling strategy in multicolored regions, while all homogenous regions are marked with
LS. Throughout the tested systems, BS are top-performing (low ranks) within multicolored
regions with weak (Figure 6.11 c)) and ES and BS within multicolored regions with strong
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Figure 6.12: Evaluation of content-aware scribble placement (homogenous regions). The
evaluated conversion results were generated by changing the scribbling strategy in homogenous
regions while keeping it constant (i.e., LS) in multicolored regions. Each plot compares the
conversion accuracy achieved with different scribbling strategies placed in homogenous regions.
These scribble rankings (color coded points) are computed per region (a)-d)) and per system.

borders (Figure 6.11 a)). Thus, the importance of increased support at weak region borders
(BS) and of capturing different colors within multicolored regions (ES or BS) is confirmed.

While using BS or ES in multicolored regions is preferable for the error in multicolored
regions, this is not necessarily the case for the error in homogenous regions (i.e., BS and
ES have large ranks in Figure 6.11 b) and d)). For example, the disparity from BS can still
“leak“ into neighboring homogenous regions across a weak joint region border.

Different scribbling strategies in homogenous regions. When investigating the choice of scrib-
bling strategy for homogenous regions, it is important to note that only a small amount of
pixels (i.e., 9 percent) in our dataset belong to this region class. The key idea of 2D-to-3D
conversion, i.e., conversion-generated disparity maps should be piecewise smooth with
disparity edges at color edges, implies that homogenous regions are ideal for conversion.
The fundamental role of this region class conflicts with its small amount of pixels in our
dataset. This suggests an extension of the key assumption of 2D-to-3D conversion to
include further constancy assumptions (e.g., consider repetitive color patterns as in the
segmentation approaches [5, 77, 79] or motion information as in GS+P’s video version).

In homogenous regions with weak borders all tested systems prefer BS (Figure 6.12 d),
low ranks for BS) due to BS’ support at weak region borders. In homogenous regions with
strong borders (Figure 6.12 b)) the scribbles’ ranks are similar to each other, indicating
that all scribbling strategies pose good choices. However, since only 0.02 percent of the
pixels in the dataset belong to this region class and since their small region sizes lead to a
strong resemblance between scribbling strategies, their evaluation results are not reliable.

The scribble choice for homogenous regions may affect the results in multicolored regions.
Since homogenous regions contain approximately a single color, the pixel colors covered
by all scribbling strategies are similar to each other when placed in homogenous regions.
The difference between the scribbling strategies boils down to the number of their annotated
pixels and their spatial positions. This means (i) over-smoothing, (ii) multicolored regions’
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Figure 6.13: Example of multicolored region with strong borders. Left: Scribbles (black), i.e.,
a) ES or b) BS in strong and LS in weak border region. Right: Results of different conversion
systems. Generally the systems’ connectivity constraints avoid (GC+RW, LSE, GS+P) or reduce
(CVF (DB), CVF (WTA)) erroneous propagations into BS’ enclosed areas. Specifically in the
shown example, for GC+RW and LSE: Compared to ES, BS avoids the propagation of disparities
from surrounding scribbles into the strong border region, but causes such errors in surrounding
regions. GS+P, CVF (DB) and CVF (WTA): Results with ES and BS are similar to each other.
Bottom: Cut-out of input image (Ambush2 from [27]), reference solution and region classes.

insufficient annotations (i.e., LS) and (iii) color similarities between (neighboring) regions
can lead to errors within multicolored regions. Multicolored regions with weak borders
(Figure 6.12 c)) have large ranks when using BS in homogenous regions. This indicates
that erroneous propagations into multicolored regions, due to (i)-(iii), are more likely if
scribbles in neighboring regions are placed spatially closer to them. Multicolored regions
with strong borders were practically not affected by the scribble choice for homogenous
regions (Figure 6.12 a), rankings have a narrow range, i.e., below one).

Different scribbling strategies in strong border regions. In strong border regions (Figure 6.14
a) and b)) we can confirm the observations made above. The preferred (low ranks) scrib-
bling strategies in multicolored regions with strong borders (Figure 6.14 a)) are ES and BS.
Figure 6.13 illustrates GC+RW’s and LSE’s preference for BS over ES. For GC+RW and
LSE, BS avoid blended disparities in regions’ interior, which is not the case with ES. For
these two systems the spatial placement of a scribble can regulate a disparity falloff.

The choice of scribbling strategy for strong border regions may affect the results in weak
border regions. Related errors in weak border regions can be caused by (i) over-smoothing
strong borders and (ii) insufficiently annotated pixel colors (e.g., LS) in either region.



6.3. Experimental Results and Evaluation 129

Figure 6.14: Evaluation of content-aware scribble placement (strong border regions). The
evaluated conversion results were generated by changing the scribbling strategy in strong border
regions while keeping it constant (i.e., LS) in weak border regions. Each plot compares the
conversion accuracy achieved with different scribbling strategies placed in strong border regions.
These scribble rankings (color coded points) are computed per region (a)-d)) and per system.

Figure 6.15: Evaluation of content-aware scribble placement (weak border regions). The
evaluated conversion results were generated by changing the scribbling strategy in weak border
regions while keeping it constant (i.e., LS) in strong border regions. Each plot compares the
conversion accuracy achieved with different scribbling strategies placed in weak border regions.
These scribble rankings (color coded points) are computed per region (a)-d)) and per system.

Due to the definition of strong borders with respect to all neighboring regions, (iii) color
similarities between a weak and a strong border region do not arise at their joint region
border. Furthermore, scribbles that are placed (vi) spatially close to neighboring regions are
prone to erroneous propagations across strong borders. In most cases, the scribbles’ ranks
in weak border regions (Figure 6.14 c) and d)) are similar to each other, which indicates
little influence from the scribble choice in strong border regions. GC+RW and LSE are
the exceptions to this observation. For these systems, BS and ES have a larger effect on
multicolored regions with weak borders (Figure 6.14 c)), i.e., might cause errors (e.g., due
to (i)) in multicolored regions with weak borders (e.g., Figure 6.13 b), LSE)

Different scribbling strategies in weak border regions. Throughout the tested systems BS are
top-performing (low ranks) within regions with weak borders (Figure 6.15 c) and d)). This
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observation further confirms that weak border regions are preferably annotated using BS.

Analogue to previous discussions, the scribble choice for weak border regions is not
necessarily ideal for strong border regions. Reasons for related errors in strong border
regions include the points (i)-(iv) from above. For example, with BS propagations into
strong border regions, due to (i)-(iv), are more likely than with scribbles that are placed
closer to region centers (Figure 6.15 a) and b), larger ranks for BS than ES, LS and PS). In
multicolored regions with strong borders (Figure 6.15 a)) a similar effect can be observed
for ES. When using ES (or BS) in weak border regions, (ii) insufficient scribble annotations
(i.e., LS) are only present in multicolored regions with strong borders. Thus, in these
regions, colors that are not captured by LS might be assigned to a disparity from a scribble
(BS or ES) that is associated with a similar (or the same) color as the missing one.

Overall, this in-depth evaluation revealed four main insights concerning the scribble placement:
(1) While the key assumption of 2D-to-3D conversion focuses on homogenous regions, ideally with
high-contrast color edges, this region class turned out to be uncommon in our dataset. We suspect
similar behavior for other (recorded) 2D content and, hence, believe that extensions of the common
assumption of color constancy would be beneficial for 2D-to-3D conversion systems. (2) Our
evaluation results highlighted the importance of capturing different colors within objects (ES or
BS) and providing additional spatial constraints close to low-contrast object borders (BS) for all
tested conversion systems. (3) While in many aspects the investigated conversion systems behaved
similarly, they differed in some. For example, the smoothing effect of systems that employ global
edge-aware interpolations (LSE and GC+RW) is (also) regulated by the spatial positions of the
scribbles and, hence, ideally taken into account when annotating the 2D content. For these systems
the annotation of fronto-parallel objects might require a scribbling strategy that provides more
(spatial) constraints (BS). Vice versa, systems that perform less or a different kind of smoothing
(GS+P, CVF (WTA) and CVF (DB)) might benefit from additional scribbles when indicating
disparity falloffs. (4) We highlighted that the choice of scribbling strategy not only influences the
object that is annotated with it, but may also influence nearby objects. While this was expected,
we showed that this aspect should ideally be considered when choosing a scribbling strategy. The
prime example in this context were objects with low-contrast borders. Our evaluations suggested
that ideally both sides of a low-contrast border are annotated with scribbles that are placed close to
them (BS). In general, using a more adequate annotation strategy (BS or ES) in one region often
caused erroneous propagations into regions that were insufficiently annotated (e.g., LS).

6.4 Summary

This chapter has evaluated the impact of the user input, i.e., scribble-based user annotations, on
five different semi-automatic 2D-to-3D conversion systems. In the course of this evaluation,
the tested conversion systems were compared as well. We have automatically generated sets
of scribble inputs that follow four different scribbling strategies. They simulate minimalistic
and effortless scribbling strategies as might be drawn from a system-unaware user as well as
more advanced and labor-intensive scribbling strategies that take the content of the 2D images
into account. Specifically, we use minimalistic point scribbles (PS), similar effortless line
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scribbles (LS) that cover larger areas than PS, expert scribbles (ES) that deliberately annotate
different image colors and even more labor-intensive border scribbles (BS), which trace object
borders. We have quantitatively compared 2D-to-3D conversion results of different 2D-to-3D
conversion systems and different scribbling strategies with corresponding reference solutions.

The first experiment compared the accuracy of results from different systems and scribbling
strategies. The evaluations confirmed that the choice of scribbling strategy affects the accuracy
of the conversion results and the benefit of putting more effort into the annotation process (ES
or BS). The top-performing conversion system was our segmentation-based algorithm from
Chapter 4 (GS+P). Tested systems that use segmentation information (GS+P, GC+RW, CVF (WTA)
and CVF (DB)) in most cases outperformed the system that does not rely on segmentation (LSE).

The second experiment focused on the robustness against scribble perturbations. We could neither
identify a single scribbling strategy nor 2D-to-3D conversion system as the most robust throughout.
In systems that rely on global interpolations (GC+RW and LSE), perturbations manifested themselves
in changes of disparity falloffs in their results. Systems that are based on local decisions or smooth
locally (GS+P, CVF (WTA) and CVF (DB)), often assigned large areas to a different disparity after a
perturbation. In the latter systems changes were visually and quantitatively more noticeable.

The third experiment addressed inaccurate user annotations by performing the 2D-to-3D
conversions on sets of distorted scribbles that contained erroneous disparity assignments to
pixels. We have confirmed that the tested systems’ error tolerance can be improved by using
scribbling strategies that cover larger, differently colored areas in 2D images and place scribbles
spatially closer to each other (e.g., BS). Systems that use color models (CVF (WTA), GC+RW
and CVF (DB)) were more error-tolerant than a system that propagates disparities from individual
pixels (GS+P). The seemingly most error-tolerant system was generally less accurate (LSE). The
introduced erroneous annotations were hardly noticeable in its already inaccurate results.

The fourth experiment focused on the systems’ ideal scribbling strategies with respect to
different types of image regions (i.e., multicolored or homogenous, strong or weak border re-
gions). Generally, the tested systems preferred scribbling strategies that capture different colors
for multicolored regions and scribbles close to weak object borders (with low color-contrast).
Ideally, the characteristics of the used systems, such as their respective smoothing effects, are
taken into account when annotating 2D content. For example, when annotating fronto-paralell
objects, systems hat employ global edge-aware interpolations (LSE and GC+RW) might require a
scribbling strategy that provides more (spatial) constraints (BS). When analyzing interactions be-
tween different region types that are annotated using different scribbling strategies, we noticed that
the usage of a more adequate scribbling strategy in one region (e.g., BS in a weak border region)
often caused erroneous propagations into nearby regions that were not sufficiently annotated.

Overall, our evaluation study provided practical insights into the scribble-based annotation
process in the context of the tested semi-automatic 2D-to-3D conversion systems. Our evaluations
have shown that none of the tested conversion systems excels in all four experiments with each
scribbling strategy. However, two segmentation-based systems, i.e., our 2D-to-3D conversion
from Chapter 4 (GS+P) and a system that combines segmentation and edge-aware interpolation
(GC+RW), achieved high conversion quality. Ideally, these systems are used with a scribbling
strategy that places scribbles close to object borders (BS), which improves their conversion
results, robustness to scribble perturbations and tolerance to inaccurate annotations.





CHAPTER 7
Conclusions and Future Work

7.1 Conclusions

This thesis has focused on the problem of cost-efficiently converting monoscopic (2D) videos to
stereoscopic (3D) videos based on sparse user-given disparity information. This semi-automatic
2D-to-3D conversion process ideally (i) requires only minimal user input and (ii) efficiently
generates disparity maps of high conversion quality. In this thesis we have addressed both
aspects. We have proposed two semi-automatic 2D-to-3D conversion algorithms that rely on
spatio-temporal video analysis. In particular, we have exploited the similarities between the
problems of 2D-to-3D conversion and video segmentation by integrating segmentation techniques
into the conversion process. While 2D-to-3D conversion propagates sparse disparities between
pixels that are similar (in terms of color) to each other, segmentation techniques group pixels
into segments according to some homogeneity criterion (e.g., color). This suggests that pixels
within the same segment are likely to be assigned the same or a similar disparity. In our work, the
segmentation information has been used to improve the quality of the resulting disparity maps
near object borders and to enable coherent disparity interpolations over time.

In our first algorithm, the conversion is performed jointly with an automatic graph-based
video segmentation. The scribbles’ purpose is only to initialize some pixels with disparities. The
algorithm propagates available disparities between neighboring pixels while assigning them to the
same segment. In this manner, we have generated 2D-to-3D conversion results with sharp disparity
edges close to object borders in the 2D video. A selective filtering step further enables disparity
changes within segments and over time. For this algorithm, we have provided an optimized
implementation that achieves interactive runtimes (one fps for a resolution of 634× 480 pixels).

The second semi-automatic 2D-to-3D conversion algorithm builds upon an interactive video
object segmentation algorithm that was developed in this thesis. The segmentation algorithm
achieves fast-processing speeds (250 fps for a video with a resolution of 620×360 pixels) by using
a framework that solves label-based optimization problems within a frame-wise filtering scheme. In
order to improve temporal coherency in the context of object segmentation, we have expanded the
filtering scheme to the temporal domain. In the proposed 2D-to-3D conversion algorithm, pixels
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covered by one and the same scribble are marked as belonging to the same segment and their
disparity is defined by globally describing their appearance (using color models) in the 2D video.
According to these color models, we perform a multi-label segmentation, in which pixels within a
segment are assigned to the same or similar disparities. The segmentation result further enables us to
analyze arising occlusions between segments. By performing temporal disparity interpolations that
respect the observed occlusions, we are able to obtain perceptually more coherent disparity maps
and, hence, improve the quality of our conversion results.

We have experimentally shown that our algorithms achieve high conversion quality on computer-
generated and recorded 2D videos and are competitive when being compared to related algorithms. In
a final evaluation study, we have compared our algorithms with established semi-automatic 2D-to-3D
conversion algorithms over a dataset with ground truth reference solutions. These evaluations are
performed under consideration of different scribbling strategies, hence, we have generated 205 different
conversions per image in the dataset. As expected, the results of the tested algorithms were affected by
the chosen scribbling strategy and all tested algorithms preferred labor-intensive scribbling strategies
over minimalistic ones. In terms of accuracy, our first algorithm, which is based on a graph-based
segmentation (Chapter 4), was the top-performer for all investigated scribbling strategies. The tested
conversion algorithms that incorporate segmentation algorithms, including our first (Chapter 4) and
second (Chapter 5) algorithm, outperformed a well-established 2D-to-3D conversion algorithm [56]
that does not incorporate segmentation algorithms in its conversion process. In this context, both our
algorithms’ sharp disparity edges close to object borders were a key advantage over the mentioned
competing algorithm. Further evaluations revealed that our first algorithm (Chapter 4) is more
sensitive to scribble perturbations and inaccurate annotations than its competitors. In these aspects,
our second conversion algorithm (Chapter 5) was more stable, even though its quantitative results
were outperformed by a competitor [56] that over-smoothed its conversion results. Concerning the
robustness to scribble perturbations, we observed quantitatively better results for algorithms that
employ global interpolations [56,118]. Concerning inaccurate user annotations, algorithms that use
color models, such as our second conversion algorithm (Chapter 5), were found to be more error-
tolerant than algorithms that propagate the disparity from each single pixel, as our first conversion
algorithm (Chapter 4). A final evaluation sought to shed more light on the ideal scribbling strategy
in conjunction with different image areas to provide practical insights into the annotation process. It
highlighted, e.g., the importance of drawing scribbles close to object borders that separate similarly
colored objects and annotating differently colored areas within objects with one and the same scribble.

7.2 Future Research Topics

We have demonstrated that semi-automatic 2D-to-3D conversion is a promising alternative to
laborious manual 2D-to-3D conversion. The integration of segmentation algorithms into the
conversion process enabled us to improve the quality of generated 3D content. However, there
are various open topics that can be pursued in future research. Some of them are listed below:

• The semi-automatic 2D-to-3D conversion algorithms that were presented in this thesis (Chap-
ter 4 and Chapter 5) are based on the same common key assumption that pixels with similar
colors are likely to have similar disparities. However, this assumption becomes unreliable for
low-contrast scenes and scenes that contain objects with similar colors. In addition, objects
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that should obtain similar disparities might contain quite different colors. As shown in Chap-
ter 6, both cases require additional user involvement. While our algorithms have incorporated
motion information to guide the propagation process, further research might seek to extend
the usage of motion information to long-term trajectories as in [86], to consider hints such
as repetitive color patterns and image gradients as in [5,8,79,122] or to further constrain the
generated disparity maps by simultaneously generating novel views similarly to [163].

• While our interactive video object segmentation algorithm (in Chapter 5) adopted a pro-
gressive annotation strategy, our semi-automatic 2D-to-3D conversion algorithms trigger
their respective conversion procedures after all scribbles have been drawn. Consequently,
adjusting the scribble input to improve a conversion result also requires its recomputation.
When using a progressive annotation strategy, this recomputation might only concern image
regions that are connected to the adjusted scribble and, thus, could be performed faster.
Furthermore, visual previews of the conversion results might facilitate the annotation pro-
cess. We believe that addressing this point in future research could lead to the development
of even more practical and intuitive 2D-to-3D conversion systems.

• In Chapter 4, we showed that semi-automatic 2D-to-3D conversion naturally fits with a
graph-based (automatic) video segmentation technique. While it led to excellent conversion
results, the concept of performing disparity propagation during video segmentation still
might be improved upon. For example, disparity scribbles could be treated as soft instead of
hard constraints to increase the algorithm’s error tolerance. Extending the region-graph by
sparse edges that respect a 3D connectivity constraint might further reduce the amount of
required scribbles. Further research could also focus on increasing the perceptual coherence
of the first algorithm, for example, by exploring long-range temporal interactions among
objects [86] and adapting the propagation rule set accordingly.

• In Chapter 5, we took a step towards the generation of perceptually coherent disparity
maps. A promising direction of research would be refining and extending this basic idea by
focusing on the generation of 3D content with high chances of visual comfort in general.

• In this thesis (e.g., Chapter 6), evaluations have focused on comparisons of conversion-
generated disparity maps with reference solutions. However, our publication [106] indicates
that in stereoscopic viewing conditions, objective evaluations only weakly correlate with
subjective ones. Distorted 3D content might still create plausible 3D effects [73, 106].
Thus, subjective evaluation studies of conversion-generated 3D content are an interesting
topic to pursue. Setting apart subjectively distracting and insignificant errors in disparity
maps would further enable future 2D-to-3D conversion algorithms to focus on the former.

• Related to the previous point, future work could address the usability of semi-automatic
2D-to-3D conversion systems. These studies might consider the annotation time and
amount of user interaction required to generate subjectively satisfactory conversion results.
In this context, the scribble-based annotation process itself could be investigated further.
In this thesis, we have performed scribble-based annotations and, based on this subjective
experience, have automatically generated them in Chapter 6. However, no user study was
performed to further validate our experiences. We believe that such studies could lead to a
more thorough understanding of the scribble-based annotation process.





APPENDIX A
Descriptions of Used Datasets

Throughout this thesis evaluations were performed using images and videos from different
datasets. This appendix provides an overview and more detailed descriptions of the used data.

Tsukuba dataset. Our Tsukuba dataset (Figure A.1) consists of three sub-videos (resolution of
640× 480 pixels) that were taken from the new Tsukuba dataset [102]. This dataset [102]
is a computer-generated stereoscopic video in which a moving camera captures a static
scene. It is provided with GT disparity maps that contain 256 disparity levels. The video
was rendered with four different illuminations (see [102] for details), from which we use
the daylight rendering (smooth illumination except for a few over-exposed areas). The
used sub-videos, i.e., Tsukuba1, Tsukuba50 and Tsukuba380, have 17, 18 and 100 frames,
respectively. The number in their names is the number of their first frame according to
the frame numbering of the video in [102] (e.g., the first frame of Tsukuba1 is the first
frame in [102]). Although being computer-generated, the videos pose several challenges to
2D-to-3D conversion algorithms. They contain, for example, temporal disparity changes
(e.g., Tsukuba1 and Tsukuba50), rounded objects (e.g., cans in Tsukuba380) and color
similarities between objects at different disparities (e.g., camera and shelf in Tsukuba1).

Sintel dataset. Our Sintel dataset (Figure A.2) consists of ten videos (resolution of 1024× 436
pixels) taken from the MPI Sintel Flow dataset [27, 166]. Their publicly available training
data1 contains computer-animated videos and GT OF [27]. The dataset was later extended
by disparity, depth and segmentation GT. Since this data was not available at the time of our
evaluations, we used depth GT (in meters) that was kindly provided by the authors before its
release. The videos are provided in different levels of difficulty, i.e., final with illumination
effects, clean with shading only and albedo with none of the mentioned effects. If not
explicitly mentioned otherwise, we use albedo renderings. It is worth to note that although
albedo constitutes the lowest difficulty level for evaluating OF estimation algorithms, it
still poses several challenges to 2D-to-3D conversion algorithms, e.g., temporal disparity

1http://sintel.is.tue.mpg.de
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changes (e.g., Sleeping1), rounded and slanted objects (e.g., Ambush7), color ambiguities
(e.g., Ambush5) and fast moving objects (up to 100 pixels per frame [27], e.g., Ambush2).
Contrary to the Tsukuba videos, the Sintel videos show various scenes and contain camera
and object motion (e.g., Ambush2, Shaman3). The final renderings of these scenes provide
even more challenges than the albedo renderings, including larger color ambiguities and
low-contrast scenes (e.g., Ambush2).

Long video dataset. This video dataset (Figure A.3) consists of three longer videos, i.e., Child,
Head and Interview, with 41, 81 and 101 frames, respectively. The videos were taken
from [20, 42], i.e., Child (600 × 338 pixels), Head (600 × 330 pixels) and Interview
(600 × 480 pixels). Our long video dataset contains computer-generated videos and a
recorded video, i.e., Interview. In case of Interview, the provided reference solution
contains depths that was recorded with a special camera [42]. For all their videos, [20] only
provides disparity or depth values for a small number of frames, i.e., three frames for Child
and five frames for Head and Interview. In this dataset, the depth values or disparities in
the reference solutions are quite stable with only slight changes over time. However, they
exhibit depth or disparity variations within objects, i.e., rounded and slanted objects (e.g.,
lawn in Child, cap in Head, table in Interview). All three videos contain color similarities
between objects at different distances from the camera (e.g., head and blind in Interview).

Middlebury image dataset. The well-known Middlebury stereo benchmark [134], that was
originally intended for evaluating stereo matching algorithms, provides still images with
corresponding GT disparity maps. Its publicly available training dataset contains 35 stereo
pairs with GT disparity maps that were obtained using different methods, e.g., using
structured light (see [134] and the Middlebury stereo evaluation website2 for details).
Figure A.4 shows the left images of the stereo pairs, that were used when evaluating
2D-to-3D conversion algorithms, and their disparity GT. On average, the images in this
dataset have a resolution of about 432× 365 pixels. They cover a great variety of scenes,
including cluttered scenes with many small objects (e.g., Dolls) and scenes that contain only
few large objects (e.g., Monopoly), scenes with large homogenous regions (e.g., Wood1)
and highly-textured scenes (e.g., Cloth1), color similarities between objects at different
disparities (e.g., Books) and low-contrast images (e.g., Lampshade1), slanted and rounded
objects (e.g., Bowling1), but also predominantly fronto-parallel scenes (e.g., Laundry).

Recorded stereo dataset. We use a recorded stereo dataset (Figure A.5) which consists of the
five videos, i.e., Parade, Palace, City, Stairs and Football, that were recorded with a
stereoscopic camera. Parade, Palace, City and Stairs have a resolution of 689× 282 pixels
and consist of 11, 10, 18 and 20 frames, respectively. Football has a resolution of 669×576
pixels and 21 frames. When applying 2D-to-3D conversion algorithms to these videos
only one view (i.e., left view) is used. The stereoscopic videos were recorded without
capturing GT disparities. We generated reference solutions by applying a stereo matching
algorithm [12] that computes disparities for each video. The videos introduce complexities
such as object and camera motion (e.g., Parade), partial occlusions (e.g., walking person in

2http://vision.middlebury.edu/stereo
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Palace), temporal disparity changes (e.g., person in Stairs), rounded or slanted surfaces
(e.g., field in Football) and color ambiguities (e.g., bushes in Stairs). Since these videos are
recorded, their image quality is lower than the image quality of computer-generated test
data. Furthermore, their stereo matching-generated reference solutions are less accurate
than the rendered ground truth reference solutions from the computer-generated data.
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Figure A.1: Tsukuba dataset. Videos Tsukuba1, Tsukuba50 and Tsukuba380: Frames (top) and
their disparity GT (bottom) from [102]. Foreground: bright, background: dark.
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Figure A.2: Sintel dataset. Videos Alley1, Ambush2, Ambush5, Ambush7, Shaman2, Shaman3,
Sleeping1 and Temple1: Final and albedo renderings of first and last frame of each video (top)
and corresponding inverted depth GT (bottom) that was provided by the authors from the MPI
Sintel dataset [27, 166]. Foreground: bright, background: dark.
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Figure A.3: Long video dataset. Videos Child, Head and Interview: Frames (top) and corre-
sponding reference solutions (bottom) from [20, 42]. Foreground: bright, background: dark.
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Figure A.4: Middlebury image dataset. 35 images (left views) (top) and corresponding disparity
GT (bottom) from [134]. Foreground: bright, background: dark, no GT: black.
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Figure A.5: Recorded stereo dataset. Color videos (left views) Parade, Palace, City, Stairs and
Football (top) and reference solution (bottom). Foreground: bright, background: dark.



APPENDIX B
Supplements to Cost Volume Filtering

for 2D-to-3D Conversion

This appendix provides a program flow and additional evaluation results that were not shown in
Chapter 5 for our CVF-based 2D-to-3D conversion algorithm (Section 5.2.2).

B.1 Program Flow

Figures B.1 - B.6 provide the program flow for our CVF-based 2D-to-3D conversion algorithm
that was described in Chapter 5 (in Section 5.2.2). As shown in Figure 5.5, this algorithm
consists of six components: (1) The generation of cost volume P from multiple scribbles (MS,
Figures B.1), (2) the spatio-temporal closeness constraint (STC, Figures B.2) and (3) cost volume
filtering (CVF, Figures B.3) without or with motion guided filtering (+TC) to obtain a filtered cost
volume P ′. Subsequently, (4) temporal disparity change models (DC, Figures B.6) that correct
naive interpolations (-n) by guided interpolations (-g) can be applied. They can either be applied
with respect to time (-tM) or segment size s(.) and motion (-sM). Finally, (5) a 3D connectivity
constraint (CON, Figures B.5) and (6) the disparity assignment using a winner-takes-all (WTA) or
a disparity blending (DB) scheme yields a final disparity video (Figures B.4). Components (1),
(3) and (6) build the core algorithm, while the remaining components, i.e., (2), (4) and (5) are
optional. All six components are discussed in Section 5.2.2 and their respective program flow is
given in Figures B.1 - B.6. Figure B.6 focuses on depth order guided interpolations according
DC -tM and DC -sM.

B.2 Additional Evaluation Results

B.2.1 Comparison of Different Algorithm Versions with Depth Blending

Table B.1 provides additional quantitative evaluation results for our CVF-based 2D-to-3D con-
version algorithm (Section 5.3.2) in Chapter 5. It compares different versions of our algorithm

145



146 Appendix B. Supplements to Cost Volume Filtering for 2D-to-3D Conversion

Figure B.1: Program flow for MS. User-provided scribbles L = (S1, ..., SL) with user-selected
disparities D = (D1, ..., DL) are grouped and matched using a motion segmentation algo-
rithm [48] and color comparisons (using a threshold Tcor). The color comparisons use the colors
of pixels in the input video I that were marked by specific scribbles. This results in grouped
and matched scribbles Ṡl’s ∈ L̇ with Ḋl ∈ Ḋ, OF vectors and their derived OF trajectories as a
byproduct of [48]. The cost volume P (x, y, t, l) contains probabilities that pixels i = (x, y, t)
belong to scribbles Ṡl. P is generated from color histograms Hf,l and Hb,l built for each Ṡl.

(i.e., MS, STC, CON, +TC, DC-tM and DC-sM) when using depth blending (DB) on a set
of computer-generated videos with depth GT from [27]. The corresponding results that were
generated with WTA (Table 5.3) and DB (Table B.1) behave similarly. Specifically, if enabling a
component improves the WTA result, it typically also improves the DB result. Analogously, as in
Table 5.3, when comparing the MSEs with GT OF and estimated OF in Table B.1, the average
quality is hardly affected by the change of OF.

B.2.2 Quantitative Comparison of Naive and Depth Order Guided Interpolation

Table B.2 and Table B.3 provide additional quantitative evaluation results for our CVF-based
disparity propagation (Section 5.3.2) in Chapter 5. In this context, Table B.2 and Table B.3
compare a naive temporal depth interpolation technique with our depth order guided temporal
interpolation technique. The evaluation is performed on a set of computer-generated videos with
corresponding depth GT from [27]. In Table B.2 our 2D-to-3D conversion algorithm uses GT
motion information, i.e., GT OF, while in Table B.3 the comparison is conducted with estimated
OF [96]. When we compare the quantitative evaluation results (i.e., in Table B.2 and Table B.3) of
the different interpolation techniques, we observe that their MSEs are very similar. When applying
our algorithm with estimated OF, our depth order guided interpolation quantitatively improves
the results on average by 19 percent. For estimated OF, the major quantitative improvement
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Figure B.2: Program flow for STC. Scribbles Ṡl ∈ L̇ with disparities Ḋl ∈ Ḋ are tracked
throughout the video I by following OF trajectories (from MS) that contain Ṡl’s marked pixels.
Each cost volume slice P (., ., t, l) is updated using a confidence weight pclose,l which was
computed from a (truncated) distance transform [17] Ml that measures the distance of each pixel
to a (tracked) scribble Ṡl in a frame t. The truncation value tclose is typically set to the maximal
possible value (i.e., frame diagonal) for all scribbles.

Figure B.3: Program flow for CVF. Each cost volume slice P (., ., ., l) for a scribble Ṡl ∈ L̇ is
filtered under the guidance of the input video I to obtain its filtered version P ′(., ., ., l). Either
the common GF [59] or our motion guided GF (+TC) that filters along OF trajectories is used.

can be observed for Ambush5, which contained perceptual conflicts between large foreground
objects (i.e., large depth differences). For test videos in which such conflicts occurred for smaller
objects (e.g., Temple3) or between background objects, the observed qualitative improvements
are smaller. In case of GT OF, the MSEs of the naive interpolation are practically not affected by
our guided interpolation. In this context, it is important to note that the performed depth order
guided interpolation corrects naive interpolations, if they result in a perceptual incoherency, to the
closest valid disparity (or, for data from [27], depth value). Thus, they often lead to quantitatively
similar results. Hence, in Section 5.3.2 we focus on visual comparisons of our algorithm between
the different interpolation techniques mentioned above as opposed to quantitative comparisons.
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Figure B.4: Program flow for disparity assignment (WTA or DB). The disparity di of a pixel
i = (x, y, t) in the input video I can be assigned using one of two assignment schemes (WTA
or DB). Both schemes determine the l with the largest probability in the filtered cost volume
P ′(x, y, t, l) for i and accordingly assign i to segment Rl ∈ R corresponding to scribble Ṡl ∈ L̇.
WTA further assigns i’s di to a disparity Ḋl ∈ Ḋ that corresponds to Ṡl. DB averages the n Ḋl

corresponding to the n l with the largest P ′(x, y, t, l) for i to obtain i’s di.

Figure B.5: Program flow for CON. If, in the current WTA disparity map for frame t of the
input video I , a pixel i = (x, y, t)’s disparity di (e.g., Ḋl ∈ Ḋ) is not spatially connected
to its corresponding (tracked) scribble (e.g., Ṡl ∈ L̇), preduce reduces the filtered probability
P ′(x, y, t, l) of i. A connectivity path in the current WTA disparity map consists of neighboring
pixels i that are assigned to the same or a larger disparity di than the disparity Ḋl of the currently
observed scribble Ṡl. preduce is an appropriate factor to reach a value close to zero.
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Figure B.6: Program flow for DC -tM and DC -sM. Motion-caused (dis)occlusions are detected
and investigated to determine a rough depth order between segments Rl ∈ R in each frame
t ∈ [1, T ] of video I [112]. (Dis)occlusion cues from t are stored in a DAG for t. From a DAG
the depth level λ(Rl, t) of segments Rl and corresponding scribbles Ṡl ∈ L̇ in t can be derived.
DAGs are also used to derive disparity restrictions rmin(Rl, t) and rmax(Rl, t) for scribble pairs
Ṡl. These rmin and rmax are used in a depth order guided disparity interpolation (DC -tM or DC
-sM) that is performed for scribble pairs Ṡl and between their different user-selected disparities
Ḋl = {Dl, Dk} in the first and last frame and obtains the interpolated disparities Ḋl,t for each t.
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Table B.1: Comparison of different algorithm versions (DB). The table lists the mean squared
error (MSE) of results averaged over all pixels multiplied by 100. Our algorithm was applied
with ground truth (GT) optical flow (OF) (top) and with estimated OF (bottom). The endpoint
error (EE) measures the accuracy of the OF (right). Our algorithm is tested in different versions,
in which different components are en- or disabled.

MSE DB, using GT OF EE
MS STC CON DC -tM DC -sM OF

+TC +TC +TC +TC +TC
Alley1 0.07 0.07 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.00

Ambush2 1.03 0.34 1.00 0.32 1.00 0.32 1.00 0.31 1.00 0.31 0.00
Ambush5 1.02 1.02 0.78 0.78 0.80 0.80 0.77 0.78 0.77 0.78 0.00
Ambush7 0.76 0.76 0.43 0.43 0.45 0.45 0.42 0.43 0.42 0.43 0.00
Shaman2 1.18 1.19 0.90 0.89 0.89 0.88 0.88 0.89 0.89 0.89 0.00
Shaman3 1.84 1.85 1.86 1.86 1.87 1.88 0.47 0.45 0.57 0.56 0.00
Sleeping1 3.68 3.68 3.61 3.61 3.60 3.60 0.68 0.68 0.79 0.78 0.00
Temple3 0.39 0.33 0.42 0.29 0.39 0.29 0.40 0.29 0.39 0.29 0.00

MSE DB, using estimated OF EE
MS STC CON DC -tM DC -sM OF

+TC +TC +TC +TC +TC
Alley1 0.06 0.06 0.04 0.04 0.04 0.04 0.05 0.04 0.05 0.04 1.73

Ambush2 1.06 0.31 1.15 0.31 1.15 0.31 1.04 0.37 1.04 0.37 73.68
Ambush5 1.04 1.05 0.74 0.74 0.76 0.76 0.74 0.74 0.73 0.74 7.12
Ambush7 0.74 0.74 0.41 0.41 0.40 0.40 0.42 0.42 0.42 0.42 2.20
Shaman2 1.20 1.21 0.92 0.92 0.89 0.89 0.89 0.89 0.89 0.89 0.60
Shaman3 1.81 1.81 1.81 1.81 1.83 1.83 0.21 0.25 0.30 0.33 1.20
Sleeping1 3.76 3.76 3.68 3.68 3.68 3.68 0.72 0.72 0.72 0.72 2.20
Temple3 0.40 0.30 0.42 0.27 0.41 0.27 0.37 0.26 0.37 0.26 13.29
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Table B.2: Quantitative comparison of naive interpolation and proposed depth order guided
interpolation (GT OF, WTA). The table lists the mean squared error (MSE) of our results
averaged over all pixels when applying our algorithm with ground truth (GT) optical flow (OF)
vectors. The given MSEs are multiplied by 100.

MSE depth change with naive interpolation
Alley1 Ambush2 Ambush5 Ambush7 Shaman2 Shaman3 Sleeping1 Temple3

tM 0.04 1.16 0.64 0.49 0.39 0.18 0.57 0.27
sM 0.04 1.16 0.64 0.55 0.42 0.23 0.64 0.27

tM+TC 0.04 0.23 0.63 0.49 0.39 0.18 0.58 0.21
sM+TC 0.04 0.23 0.63 0.55 0.42 0.23 0.65 0.21
MSE depth change with depth order guided interpolation

Alley1 Ambush2 Ambush5 Ambush7 Shaman2 Shaman3 Sleeping1 Temple3
tM 0.04 1.16 0.64 0.47 0.41 0.41 0.48 0.27
sM 0.04 1.16 0.64 0.47 0.42 0.51 0.56 0.27

tM+TC 0.04 0.23 0.64 0.48 0.41 0.40 0.48 0.21
sM+TC 0.04 0.23 0.64 0.48 0.42 0.49 0.57 0.21

Table B.3: Quantitative comparison of naive interpolation and proposed depth order guided
interpolation (estimated OF, WTA). The table lists the mean squared error (MSE) of the depth
values averaged over all pixels when applying our algorithm with estimated optical flow (OF)
vectors. The given MSEs are multiplied by 100.

MSE depth change with naive interpolation
Alley1 Ambush2 Ambush5 Ambush7 Shaman2 Shaman3 Sleeping1 Temple3

tM 0.05 1.23 1.43 0.49 0.40 0.30 0.57 0.27
sM 0.04 1.23 1.43 0.49 0.40 0.41 0.65 0.26

tM+TC 0.05 0.27 1.44 0.51 0.40 0.30 0.58 0.18
sM+TC 0.04 0.27 1.44 0.51 0.40 0.41 0.67 0.18
MSE depth change with depth order guided interpolation

Alley1 Ambush2 Ambush5 Ambush7 Shaman2 Shaman3 Sleeping1 Temple3
tM 0.05 1.23 0.67 0.47 0.39 0.30 0.56 0.28
sM 0.05 1.23 0.66 0.47 0.40 0.40 0.60 0.28

tM+TC 0.05 0.28 0.66 0.47 0.38 0.34 0.56 0.15
sM+TC 0.05 0.28 0.66 0.47 0.39 0.42 0.61 0.15
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