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Abstract 

 

In view of the growth of the market of devices such as tablets and smartphones and 

the increasing popularity of the electronic music, in this project we develop an 

application that mixes both phenomena. Specifically, it allows the user to modify a 

previously existing wave file in real-time thorough the manipulation of its frequency 

spectrum. The entire process is performed on a tablet computer. 

 Firstly, the data is extracted from the file in pieces of a certain length that can 

vary depending on the situation. These pieces, which become our signal, are 

transformed using a fast Fourier transform algorithm and their spectrum is 

manipulated by the user through tapping. After this, we inverse transform the 

modified signal to play it and subject its spectrum to some processes that improve its 

visualization, which is synchronized with the playback. 

 We establish a set of requirements that must be fulfilled, which are related to 

the accuracy in the application of the modifications and the precision and immediacy 

of its results, the quality of the output, the level of creativity that the user can achieve 

and the clarity of the contents of the application. 

 The results show that the application fulfils remarkably well every 

requirement related to the technical aspects and accomplishes its purpose preserving 

the quality of the original file. Even though the creative possibilities of this first 

prototype are limited, we consider that the improvement margin is big for further 

development. 
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1 
Introduction 

 

It was in 1977 that music started walking its way into the digital era. That year took 

place what is considered to be the first commercial digital recording experience in the 

U.S., and from there we have witnessed a fast evolution of the methods and 

technology to digitalize and store music with the consequent increase of the quality of 

the result. This way, over the last decades, the digital representation of music has been 

gaining ground to the analogue methods at a fast pace. 

 But the technology surrounding music is not the only thing constantly 

evolving, also the music itself does, and most of the times one influence the other. The 

electronic music is the latest result of this evolution and is deeply influenced by the 

developments in the recording, storage and also manipulation, through devices such as 

synthesizers, of music. Lately, this music genre and the DJs that play and compose it 

are gaining a lot of popularity and a larger share of the music delivery, as the new 

generations of consumers embrace them. 

 Regarding the storage of music in a digital form, in the last decade internet 

claimed its superiority over hardcopy supports such as compact discs. At that time, the 

only way to have access to this big amount of music was through computers, but this 

has changed with the emergence of the smartphones and tablets a few years ago. In a 

similar tendency to that of the electronic music and DJs, people increasingly choose to 

purchase this kind of devices, at the expense of PCs and laptops, making their market 

rapidly extend. 

 We have built our application with the idea to satisfy these two growing 

markets. In the next section we will establish the motivations that encouraged us to go 

ahead with this thesis and the goals that we set for ourselves. 
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1.1 Motivation  

 

In this thesis we aim to create the prototype of an application for tablets that attempts 

to mix the two growing social phenomena mentioned before. We want this application 

to allow us to manipulate an already existing source of sound in real-time, in a way 

resembling that of a DJ. However, we expect to do this in the frequency domain, i.e., 

through the modification of the coefficients of its spectrum. 

 Ideally, we want the user to be able to interact in an intuitive way with the 

application, and also the application to enhance the creativity of the user through a 

variety of manipulation options as flexible as possible and with the ability to combine 

with each other. In the next section we will introduce two examples of software to try 

to define the current state of the possibilities in sound manipulation. 

 

 

1.2 Related software 

 

In this section we are going to analyse and summarize the features of two different 

projects: Reactable and AudioSculpt. The first one is an application for tablets designed 

to be intuitive and easy to use in order to maximize our creativity. The second one is a 

computer program with more of an academic facet that enables us to thoroughly 

analyse sound and to process it in many sophisticated ways. It is easy to see that the 

Reactable project has goals much more similar to ours than AudioSculpt, but 

AudioSculpt’s interaction with the sound resembles much more that of our application. 

 Reactable is based on the homonymous electronic musical instrument and it 

consists of a circular luminous surface where we can place objects with different 

shapes related to their functionality in sound generation or in effect processing to 

produce sound. The surface will show interactive graphics and animations showing 

relevant information and the possibility to access more advanced configuration menus. 



1. Introduction 

3 
 

 

Fig. 1 Reactable application view 

 

 There are four types of objects: the generators that produce the sound and 

have a square shape; the effects that modify this sound and have a rounded square 

shape; the controllers that send control values to other objects and have a circular 

shape; and the general controllers that modify the general behaviour of the 

application. We can create music by moving and relating these objects. 

 The generators are the most essential type of object because without them 

there is no sound. There are four types of generators each one with a different way to 

create sound. We can generate basic signals such as sinusoidal or square waves while 

choosing its frequency and amplitude, play instruments stored in a sample bank, 

repeatedly reproduce sound files or take the sound from an external source. 

 

Fig. 2 Reactable oscillator object 
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 To process and modify the generated sound there are the objects named 

effects. With them we can filter the sound modifying its frequency response, delay or 

repeat it, modulate it, and also change its shape. By rotating the objects, we are able 

to change the value of its main parameter, for example, the duration of the delay. The 

interaction with the graphics around it allows us to modify the intensity of the effect. 

 There is a type of object that allows us to modify the behaviour of other 

objects, manipulating sound in an indirect way. This is the job of the objects named 

controllers. With them we can apply cyclical variations to the generated sound, create 

sequences that will be passed to the generators and even control them from and 

external device such as a midi keyboard.  

 There is a special kind of controllers, named general controllers, which affect 

the instrument as a whole, i.e., we are able to modify the output sound of all the 

objects at once. For example, we can change the volume, the tempo or the tonality of 

the sound; modify the background of the application, etc. 

 When compatible objects are positioned close to one another a connection 

between them appears automatically as they start to interact with each other. Audio 

connections are graphically represented by the sound waves that pass through them, 

i.e., the values of the data being transferred from one object to the other in real-time. 

These connections can be temporarily muted by breaking the connective link between 

them. 

 

Fig. 3 Types of objects and connections 

 

 All these objects, graphics, animations and the possibilities that they offer as a 

whole, result in an intuitive and direct way to create music. The application is easy and 

fun to use and regarding the performance, it doesn’t fall behind with the actual 

instrument which has been already used by famous musicians like Björk and renowned 

DJs like Gui Boratto. 
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 AudioSculpt is a computer program with which we can visualize, analyse and 

manipulate sound in great detail. It is a very complex software and in this section we 

will only summarize its main functionalities. 

 

Fig. 4 AudioSculpt program view 

 

 There are three different types of visualization of the sound. We can visualize 

the sound’s waveform, the sound’s instantaneous frequency spectrum or visualize it as 

a sonogram. Each one of these visualizations allows us to manipulate the sound in its 

own way with different control parameters and can be zoomed in and out and 

browsed. 

 The manipulation and processing of the sound can be graphically applied in a 

way that resembles that of a graphic design program, with the definition of time-

frequency regions that can be transformed. It allows the filtering of individual 

components or regions, the compression or expansion of the duration of the sound, 

timbre creation and modification, the improvement of the signal-to-noise ratio 

through the elimination of the noise, etc. 

 To follow the consequences of the transformations that we apply or just to 

collect valuable information about the sound that we want to manipulate, AudioSculpt 

provides several tools for its analysis. We can see each frequency component of the 

sound as it changes over time and this component’s amplitude and phase; we can 

estimate the spectral envelope; we can find the fundamental frequency of a sound; 

these are some of the most basic options, but the program’s offer is much wider. 

 This very complete and precise set of tools and the graphical interface allow 

us to have great control over the sound. Combining this with the options available for 

its manipulation results in a program that boosts creativity and that can be really 

helpful for professional and amateur music composers. 
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1.3 Challenges 

 

The application defined in Section 1.1 is our goal, and we want to get as close as 

possible to it. As we said, in this thesis we want to build a prototype of this application. 

To do that, we start establishing the challenges that we have to overcome. There are 

basically three of them. 

 The first one is related to the capacity of the tablet to work with heavy 

calculation processes such as the Fourier transform. Specifically, we must create an 

application that is technically able to endure several Fourier transforms and the same 

amount of inverse Fourier transforms every second, and optionally apply some 

modifications to the frequency spectrum coefficients to be able to obtain a different 

audio in the output preserving the quality of the original file. Moreover, it must 

provide decent results for aspects such as the response time to the user actions or the 

accuracy of the application and the results of the different manipulations. 

 Secondly, we must create a visualization for the application that is intuitive 

and helpful in order to analyse and manipulate the spectrum. We will have to find out, 

for instance, the most appropriate way to represent the amplitude of each coefficient 

of the spectrum, the most fitting scale for the frequency axis, a proper way to apply 

and control the different manipulations available, etc. 

 This leads us to the third challenge, which is to implement ways to modify the 

sound through the manipulation of the spectrum that are interesting in the sense that 

they are either useful or artistic. Now that we have stated the aims of the thesis, it is 

time to briefly introduce its contents. 

 

 

1.4 Overview of the following chapters  

 

The structure of the thesis will be the following: in Chapter 2 we will include all the 

theory background necessary to fully understand how the application works starting 

with a brief description of the digital representation of the sound in general the 

particular case of the wave format. 

 After that we will split the theory behind the Fourier transform into five 

different sections: the first one explaining the continuous Fourier series and transform, 

the second introducing the discrete Fourier series and the discrete-time Fourier 



1. Introduction 

7 
 

transform, the third describing the discrete Fourier transform, the forth addressing a 

fast Fourier transform algorithm, and finally, the fifth outlining some of its 

applications. To finish Chapter 2 we will provide mathematical theory about two of the 

tools used in the application that we think need to be detailed. 

 To start Chapter 3, we will state the requirements for the application. This will 

lead, firstly, into the description of some general ideas of what the application should 

accomplish, and then into a general exposition of the selected approach and its 

relation with the requirements. 

 The actual implementation of the application will be thoroughly described in 

Chapter 4 and some diagrams of the processes of the application will be provided. We 

will also discuss the decisions we have taken to solve the problems that we have 

encountered during the implementation. 

 Chapter 5 will deal with the evaluation of the application. First of all, we will 

describe its performance objectively, discussing the most relevant technical data, such 

as execution times, delays, time and frequency resolution values, etc. After that there 

will be a section dedicated to the users’ feedback. 

 Finally, we will place the conclusions, where we will synthesize the contents of 

the thesis, reflect on the challenges that we stated in the beginning and discuss the 

achievements and limitations of the thesis; and the future work, where will devote 

some lines to debate the possibilities for future research. 
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2 
Background 

 

In this chapter we will explain all the theory necessary to fully understand how the 

application developed in this thesis works. First, Section 2.1 will describe the digital 

representation of sound. We narrow the explanations as much as possible taking into 

account that the application works with the wave format. 

 In Section 2.2 we will define the Fourier series and the Fourier transform for 

continuous signals and we will describe how the transform is derived from the series. 

In Section 2.3 we will follow the same process for the discrete Fourier series and the 

discrete-time Fourier transform. Section 2.4 will be devoted exclusively to the 

explanation of the discrete Fourier transform and the properties that can help us the 

most in the application. One of the efficient algorithms to compute the discrete 

Fourier transform called fast Fourier transform algorithms will be described in Section 

2.5. To close the group of sections related to the Fourier transform, in Section 2.6 we 

will mention some of its applications. After this, in Section 2.7, we will introduce the 

theory regarding the filters that we use, and finally, in Section 2.8, we will present a 

frequency interpolation technique. 

 About the notation used in this chapter, it is important to remind the reader 

that we always express the discrete Fourier transform of a finite signal or the discrete 

Fourier series of a periodic signal, with its same letter in uppercase and the same sub-

index. Moreover, periodic signals are denoted with the letter   and finite signals with 

the letter  . 
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2.1 The representation of sound 

 

As sound in a digital form is the raw material of the application, we deemed necessary 

to briefly explain how we digitally represent it. A suitable definition of sound for our 

purposes could be: an analogue, time-varying, real-valued signal. Obviously, this is not 

the most appropriate type of signal to work with devices such as computers, tablets, 

smartphones, etc. To make it more suitable we need to digitize it. 

 A way to digitize a signal is to take samples of it. The process of sampling 

consists in giving a numerical value to the amplitude of the signal in a precise instant. 

To do this, we need to consider the sampling rate, i.e., how many samples we take 

every second, the bit depth, i.e., the number of bits that we use to represent every 

amplitude value, and also how we assign the numerical values to the amplitude of the 

signal. 

 

 

2.1.1 Sampling rate and bit depth 

 

There are some standardized values for the sampling rates: 8 kHz for the telephone 

communications or 44.1 kHz in the case of audio signals, but also 11 kHz, 22.05 kHz, 

etc. To understand what implies to use one sampling rate or another we need to know 

that the human ear frequency range goes from about 20 Hz to about 20 kHz and to 

take into account the Nyquist-Shannon sampling theorem. 

 This theorem states that in order to be able to perfectly reconstruct a signal 

after a process of sampling, the signal must be band limited and the sampling 

frequency must at least double that limit. Otherwise, an effect known as aliasing 

appears, distorting the signal and thus reducing its quality [3]. 

 Knowing that we cannot hear any frequency higher than 20 kHz, we can force 

it to be the highest frequency in the signal through a process that involves filtering. 

After that, and following the theorem, we can set a sampling rate that, at least, 

doubles this frequency value. This would be the standardized sampling rate of 44.1 kHz 

used to sample audio signals. Of course, if we don’t need the highest quality, we can 

use a lower sampling rate as it is done in many cases. To avoid the aliasing we just 

need to previously limit the signal’s frequency range to half the chosen sampling rate. 
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Sample rate Quality level Frequency range 

11,025 Hz Poor AM radio (low-end multimedia) 0–5,512 Hz 

22,050 Hz Near FM radio (high-end multimedia) 0–11,025 Hz 

32,000 Hz Better than FM radio (standard broadcast rate) 0–16,000 Hz 

44,100 Hz CD 0–22,050 Hz 

48,000 Hz Standard DVD 0–24,000 Hz 

96,000 Hz High-end DVD 0–48,000 Hz 

 
Table 1 Common sampling rates for digital audio1 

 

 As we have said before, we also need to define how many bits we should use 

to represent the amplitude value of every sample. The more bits we use, the more 

levels we will have to approximate the signal, reducing the error in every 

measurement. This ensures a better quality but also a bigger amount of data for the 

same information. The typical values are 8, 16, 24 and 32 bits per sample and the 

number of levels will be   , where   is the number of bits used.  

 The representation of the amplitude of a digital signal can be expressed in dB 

relative to its full scale, i.e., dBFS. In this case, the maximum amplitude value is 0 dBFS 

and corresponds to a signal that covers all the levels available. Therefore, a signal 

whose amplitude is within one level has the lowest possible amplitude value. For 

instance, a signal with 16 bits per sample has a range of amplitude that goes from 0 

dBFS to -96.33 dBFS. 

        (
       

          
)              

 

 

2.1.2 Quantization 

 

The wave files allowed by the application use a format named linear pulse code 

modulation to assign the levels to the amplitude values of the signal. This format 

distributes the levels in a linear way, i.e., we divide the amplitude range of the signal 

we are sampling in as many parts as levels we have, in a way that every pair of levels is 

separated by the same distance [13][14]. The range of the values of the levels 
                                                           
1
 Table extracted from http://goo.gl/c0xgny. Last access: June 2014. 

http://goo.gl/c0xgny
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is   (      )        . The distance between levels is defined as the quotient of 

the amplitude of the signal   and the number of levels, i.e.,      ⁄ . 

 We will assign to each sample the value of the level that is closest to the signal 

in that instant. It is in this assignation that we introduce errors. The error committed 

will be comprised between    ⁄      ⁄ . 

 

Fig. 5 Sampling of a signal with     bits.      levels linearly distributed. 

 

 

2.1.3 The signal 

 

Until now we know that the signal we use is a discrete signal. Before advancing to the 

next sections, we must define it a little bit more. As we have stated in Section 1.1, we 

want to manipulate the signal in the spectral domain, and therefore, we need to use 

the Fourier transform to compute its spectrum. To be able to both analyse the 

frequency contents of this signal and modify them in real-time, it is not useful to apply 

the Fourier transform to the entire signal at once. In Subsection 2.4.2, we refer to the 

frequency and time resolutions and this helps us understand that we need to cut the 

song into small pieces and apply the Fourier transform to each one of them separately. 

As a consequence, our signal will be limited in the time domain. If we recall that the 

range of values that our signal can take is also limited, then we can assume that the 

signal is of finite energy. After these clarifications, we can state that the signal we work 

with is a discrete aperiodic signal of finite energy. 

 In the next sections we introduce the Fourier series and transform in its 

continuous and discrete versions, its properties, and many other concepts that help us 

understand the behaviour and characteristics of this signal in the frequency domain. 
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2.2 The continuous Fourier series and transform 

 

The usage of a sum of harmonically related sinusoids to represent periodic phenomena 

takes us back to civilizations that existed thousands of years ago. Much more recently, 

mathematicians and physicists such as L. Euler or D. Bernoulli kept developing this 

idea, and their discoveries were the base for the work of Jean Baptiste Joseph Fourier, 

who was the first to affirm that any periodic signal could be represented by a sum of 

sinusoids or complex exponentials, i.e., by what is now known as its Fourier series. 

Furthermore, he obtained a method to extend this kind of representation to aperiodic 

signals. This method requires not a sum but an integral of complex exponentials, which 

no longer need to be harmonically related. This is J. B. Fourier’s main contribution to 

the fields of mathematics, physics and science in general, and it is named the Fourier 

transform [1].  

 But these results were not uncontested. As an example, the renowned 

scientist J. L. Lagrange was against them. He argued that no signal with a discontinuous 

slope could be exactly represented by a sum of sinusoids [1]. This is actually true, but it 

has not prevented the Fourier series and the Fourier transform to become incredibly 

useful tools in a very wide range of disciplines such as mathematics, science and 

engineering.  

 

 

2.2.1 Definition 

 

As we have said before the Fourier transform originates from the same idea as the 

Fourier series: representing a signal through a weighted summation of complex 

exponentials of different frequencies; and the result is conceptually the same: a 

function that indicates the amplitude of every complex exponential that forms the 

signal, i.e., the frequency spectrum of the signal. 

 In the case of the Fourier series, which only applies to periodic signals, the 

complex exponentials used for the representation are harmonically related. This 

means that their frequencies are all multiples of a fundamental frequency   , which is 

defined as the inverse of the period of the signal        ⁄ . Therefore, the Fourier 

series of a signal is a discrete and infinite sequence of coefficients, as there are only 

amplitude values for the complex exponentials corresponding to these specific 

frequencies and an infinite number of multiples of the fundamental frequency. 
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 In the frequency domain each one of these coefficients is separated from the 

next one an interval equal to the fundamental frequency. Eq. (2.1) shows the 

signal   ( ) as a linear combination of harmonically related complex exponentials, and 

eq. (2.2) its Fourier series coefficients. The constant    ⁄  has been added for 

mathematical convenience. Other constants will be added, for example, in the 

equations of the Fourier transform both in the continuous and the discrete versions, 

but we will no longer refer to it. 

 ( )  
 

 
∑   

     

  

  

 
 

 
∑   

  
  
 

 

  

  

          (   ) 

   ∫  ( )         
 

 ∫  ( )    
  
 

   
 

          (   ) 

 

 

Fig. 6 Representation of a rectangle function through the Fourier series and the sinusoids that 

form it. With 1, 3, 5 and 51 terms2. 

                                                           
2
 Figure extracted from http://www.ee.nmt.edu/~wedeward/EE212/SP08/example6.html. Last access: 

June 2014. The figure has been modified. 

http://www.ee.nmt.edu/~wedeward/EE212/SP08/example6.html
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 To obtain this kind of representation for an aperiodic signal  ( ) we need to 

interpret this signal as a periodic signal with a period   that approaches infinity. The 

most obvious implication of this assumption is that the fundamental frequency   , as 

the inverse of the period of the signal, approaches  . The effect in the frequency 

domain is that the frequency interval between one coefficient of the Fourier series and 

the next one, and also between complex exponentials, is now infinitesimally small. 

Therefore, both the coefficients and the exponentials form now continuous functions.  

 Mathematically, this forces the replacement, in eq. (2.1), of the summation of 

harmonically related complex exponentials with an integral of complex exponentials, 

whose frequencies are infinitesimally close. Therefore, the equations eq. (2.1) and eq. 

(2.2) become respectively eq. (2.3) that is the expression of the inverse Fourier 

transforms, and eq. (2.4) that is the expression of the Fourier transform. 

 ( )  
 

  
∫  ( )    

  

  

            (   ) 

 ( )  ∫  ( )       
  

  

          (   ) 

 

 

2.2.2 Convergence 

 

It is important to notice that we are assuming that   ( ) can be always represented by 

a linear combination of complex exponentials, and that is not true. Actually, as a result 

of applying the equations eq. (2.2) and eq. (2.4) to a signal, it is possible to obtain, for 

example, coefficients    that are equal to infinite or a function  ( ) that when 

substituted in eq. (2.3) results in a signal that does not converge to the original one. 

 There are two groups of signals for which we can assure that such 

representation can be achieved.  The first one is the group of signals that have finite 

energy over an infinite time interval for the aperiodic signals, or over a single period 

for the periodic ones. The second one is the group of signals that fulfil a set of three 

conditions stated by P. L. Dirichlet in 1829.  

 For the periodic signals, these three conditions are: the signal must be 

absolutely integrable over a period; it must not have an infinite number of maxima and 

minima during a single period; and it must not have an infinite number of 

discontinuities during a single period. The conditions for aperiodic signals are very 
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similar. The only differences are that the first condition must apply for an infinite time 

interval and conditions two and three for any finite time interval. 

 In the last paragraph we have described the conditions for a signal to have its 

own Fourier transform, but it is necessary to explain that some signals that do not fulfil 

all of these conditions, such as periodic signals like the rectangle function, can be 

considered to also have a Fourier transform. In the end a great amount of signals, 

including the most common and useful, do have a Fourier transform and this is why it 

is so widespread among many different disciplines. 

 

 

2.3 The discrete Fourier series and the discrete time 

Fourier transform 

 

Both the discrete Fourier series and transform have many similarities with their 

continuous counterpart: the idea of representing a signal with a linear combination of 

complex exponentials remains the same; the discrete Fourier series applies only to 

periodic signals and the transform extends the representation to the aperiodic signals; 

and the way to derive the discrete-time Fourier transform from the discrete Fourier 

series is equivalent to the continuous case. 

 We must understand the digital signal as the sampled version of a continuous 

signal, and therefore, we need to introduce two concepts: the sampling frequency   , 

i.e., how many samples of the continuous signal we are taking each second, and the 

time between samples   , i.e., the sampling period, which is the inverse of the 

sampling frequency. One of the differences from the continuous case lies in the 

notation and is a result of the appearance of the sampling frequency. We now denote 

as    or   the frequency normalized to   . If the frequency is not normalized, we 

write  . 

 It is important to distinguish between the two different kinds of Fourier 

transform that exist for discrete signals: the discrete-time Fourier transform, which 

applies to discrete signals but results in a continuous function in the frequency 

domain; and the discrete Fourier transform, for which both the signal and the resulting 

function are discrete. 

 The basic difference is that now the signal is discrete. This difference forces 

some changes in the equations due to the variation of the mathematical behavior of 
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the complex exponentials, and also creates some difficulties in processing and 

analyzing the signal that we will need to overcome. 

 

 

2.3.1 Definition 

 

The fact that the signal is now discrete due to the sampling process means that it only 

has values for the time instants that fulfil      . This way the integral in eq. (2.2) and 

eq. (2.4) becomes a summation, and the complex exponential suffers the same 

discretization process when multiplying the signal. Also, if the signal is periodic, its 

period is measured in samples and not in time, and it is equal to   and not  . This way, 

both the period and the fundamental frequency       ⁄ , as its inverse, are 

independent from the sampling frequency. 

 As we can see in eq. (2.5), when the complex exponentials become discrete in 

the time domain with a time interval between samples equal to   , they automatically 

become periodic in the frequency domain with a period equal to the   . In other 

words, the discretization limits the highest frequency that they can reach to      . 

We can also express their period either as     or     . Additionally, the 

periodicity of the complex exponentials forces both the discrete Fourier series and the 

discrete-time Fourier transform, i.e., the signal’s frequency spectrum, to be periodic as 

well. 

 (   )          (   )   
   

 
  

 
  (   )                       (   ) 

 The number of different complex exponentials that are harmonically related 

to a fundamental frequency inside any finite frequency interval is also finite. This 

means that, unlike the Fourier series for continuous signals, the discrete Fourier series 

is a finite sequence of coefficients, whose equation is shown in eq. (2.7). To be more 

precise, what is really finite is the number of coefficients that we need to 

represent      in eq. (2.6). However, eq. (2.7) is, as we have explained, periodic with 

period  , and therefore not finite. 

     
 

 
∑    

      

  〈 〉

 

 
∑    

  
  
 

 

  〈 〉

          (   ) 

   ∑            

  〈 〉

 ∑         
  
 

 

  〈 〉

          (   ) 
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 To derive the discrete-time Fourier transform equations from the equations of 

the discrete Fourier series we need only to follow a process homologous to the 

continuous case. That is, to interpret an aperiodic and finite signal      as a periodic 

signal with a period    that goes towards infinite. Again, the consequences of this 

assumption are that the fundamental frequency    approaches   and that the 

frequency interval between one coefficient of the discrete Fourier series and the next 

one, and also between complex exponentials, becomes infinitesimally small. Thus, 

both the coefficients and the complex exponentials result in continuous functions. 

 Despite these changes, the complex exponentials are still periodic with 

period     , and therefore, we only need to integrate over this interval to achieve 

the representation of      as we can see in eq. (2.8), which is the equation of the 

inverse discrete-time Fourier transform. It is easy to see that eq. (2.7) becomes an 

infinite summation resulting in eq. (2.9), which is the equation of the discrete-time 

Fourier transform. 

     
 

  
∫  ( )      
  

          (   ) 

 ( )   ∑         

  

  

          (   ) 

 

 

2.3.2 Convergence 

 

The convergence of the discrete Fourier series representation to the signal      is 

guaranteed by the fact that, both in eq. (2.6) and eq. (2.7), the summation is limited to 

a finite number of terms  , and because     , as the result of a sampling process, 

includes only finite values. In eq. (2.9) there is a summation of infinite terms, but we 

defined      as a finite signal and therefore, assuming again that      contains only 

finite values, the discrete-time Fourier transform has no problems of convergence. 

However, extending the study to aperiodic signals of infinite duration, the convergence 

of the discrete-time Fourier transform is only guaranteed if      is absolutely 

summable in an infinite interval samples or if it is of finite energy. 
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2.4 The discrete Fourier transform 

 

Up until now, for the case of the aperiodic signals, we have been able to obtain only a 

continuous spectrum. Through the Fourier transform, when the signal is continuous or 

through the discrete-time Fourier transform, when it is discrete. Nowadays, we usually 

need a discrete version of the spectrum to be able to work with digital devices. We will 

achieve that through the discrete Fourier transform of the signal. 

 

 

2.4.1 Definition 

 

We can define the discrete Fourier transform of a finite signal      of duration   as 

one period of the discrete Fourier series of a periodic signal     , whose period is     . 

We can also interpret it as on period of a sampled version of its discrete-time Fourier 

transform, with one sample separated from the next one by a frequency interval equal 

to      ⁄  [2].  

 Both ways result in one period of the same periodic discrete signal. Eq. (2.10) 

corresponds to the inverse discrete Fourier transform, and eq. (2.11) to the discrete 

Fourier transform of the signal     . Notice that if the discrete Fourier series does not 

have any convergence issues, neither does the discrete Fourier transform, as this 

transform is essentially one piece of the discrete Fourier series. 

     {
∑        

  
 

 

  〈 〉

        

           

          (    ) 

     {
∑         

  
 

 

  〈 〉

 ∑         
  
 

 

  〈 〉

        

           

          (    ) 

 We cannot forget that in eq. (2.11) we are extracting one period from the 

discrete Fourier series of     . The reason why we can substitute      for      is that 

they are equal over the interval that we are summing. Another conclusion that we can 

draw from these equations is that both      and      have the same number of 

samples. 
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Fig. 7 The finite signal      and its discrete Fourier transform     . 

 

 

2.4.2 Properties 

 

This last kind of Fourier transform is the one we use in this thesis because of its digital 

orientation. It shares some properties with the rest of the Fourier transforms, but it 

has some of its own too. In this section we focus on the properties that are relevant for 

the processes of the application. We describe them in a general way, and in some 

cases, we also explain how they are specifically used in the processes of the 

application. 

 In the introduction of this chapter, we already referred to the notation, and 

everything written there is still valid. However, to be able to correctly explain all the 

properties in this section in a general way, and also describe their specific use in the 

application, we need to do some more clarifications.  

 For the general or purely theoretical description of a property, we use 

numerical values for the sub-index of the signals. These signals are arbitrary signals 

that fulfil the conditions that we specify in every case. On the other hand, when we 

start describing the role of these properties in the application, we need to give a name 

to the signals that take part in its processes.  
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 We represent the entirety of the data inside the wave file as     . As we said 

in Subsection 2.1.2, we need to cut this signal into smaller signals. We name 

them      , where   is a sub-index that starts as   and increases with every cut 

of     . 

 

Symmetry 

 Taking into account the symmetry of the signals we work with can sometimes 

be really useful, in the sense that it can greatly decrease the complexity of an 

algorithm, increase its efficiency, etc. The nature of a signal in one domain can 

determine the symmetry in the other domain, for instance, the fact that a signal       

is real-valued has an impact in the symmetry of its spectrum. Specifically, the 

equations below show the symmetries obtained in the frequency domain for a real-

valued signal       and an imaginary-valued signal      , both of length  . 

          
     

           
     

 

Linearity 

 A basic property of all the Fourier series and transforms is the linearity. In the 

case of the discrete Fourier transform we can say that the transform of a linear 

combination of two finite discrete signals is equal to a linear combination of the 

transforms of the two signals with the same coefficients. 

                    

                    

 It can happen that the duration of       and       is not the same. It is 

obvious that        has the duration of the longer of these two signals. In order to 

sum       and       correctly, i.e., to sum the coefficients that correspond to the 

same frequency, we need both of them to be of the same duration. Therefore, before 

transforming them, we need to fill the shortest one with zeroes until it reaches the 

other one’s duration. This way, the duration of       coincides with that 

of      ,       and      . This technique is called zero padding and it is of great 

importance for the application as we will see with the following properties. 
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Time - frequency resolution 

 In the discrete Fourier transform,   is the number of samples of the signal 

that we want to transform and therefore marks its duration in the time domain. 

Additionally, it is the number of coefficients of the discrete Fourier transform of this 

signal, i.e., the number of frequencies that we can detect in the signal. 

 In the application, the actual value that   receives is greatly influenced by the 

algorithm that we use to compute the discrete Fourier transform, which leaves us with 

only a few options. However, in this section we do not take this into account, and we 

focus on the effect of the value of   on the time and frequency domains. 

 Giving   a high value results in a good frequency resolution and a bad time 

resolution, i.e., we can detect many different frequencies, but we are not able to 

precisely tell in which instant they appear. On the contrary, a low value of   limits the 

number of frequencies, but allows us to precisely know the instant they appear. There 

is no such thing as the correct value of  , it depends on many factors and it varies with 

every different application of the discrete Fourier transform. 

 The specific case of the application is the following: the signals       have a 

fixed duration  , but it is not mandatory for them to be completely filled by samples 

of     . We may need to place a variable number of zeroes at the end of the signal to 

guarantee the correct application of a filter. This implies that the frequency resolution 

always remain the same, i.e.,        has   coefficients in any situation, but the time 

resolution can vary depending on the number of samples of      that we include in 

every      . Specifically, the fewer samples we include the better the time resolution 

is. 

 One of the handicaps of having only a limited amount of complex 

exponentials to represent a signal is that, if this signal contains frequencies that do not 

match with those of the complex exponentials, we have to use a combination of these 

functions to represent these frequencies. This usually results in a contamination of the 

spectrum that consists in the appearance of low coefficients in the high frequencies. 

The lower the value of   the stronger is this problem. 

 

Circular convolution 

 Another property influenced by the periodic background of the discrete 

Fourier transform is the kind of convolution that applies to it: the circular convolution. 

We will denote it with an   inside a circle as we can see in Fig. 8. The same way that 

we obtain the discrete Fourier transform from the discrete Fourier series by cutting off 
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one period, we can extract the circular convolution from the discrete Fourier series’ 

periodic convolution. Therefore, let us first introduce this concept. 

 The periodic convolution is the convolution of two periodic signals        

and       with a period of duration    and    and equal to the finite sequences       

and       respectively. This convolution is also periodic, with period   

   {     }. Unfortunately, it doesn’t correspond to a periodic version of the linear 

convolution of       and      , because the duration of this linear convolution would 

be          which is different from    or   , unless one of them is equal to  . In 

any other case, some of the samples of this linear convolution overlap with the linear 

convolution of the two signals’,       and      , subsequent period. The periodic 

signal       formed this way is the periodic convolution of these two signals and we 

define       as its discrete Fourier series. 

      ∑             

   

   

 

                 

 If we extract one period of       we obtain      , which is the result of the 

circular convolution of       and      . To be able to express       as a function of 

these two finite signals we need to introduce the concept of modulo  . To do this we 

take      , which is the periodic version of the finite signal      , as an example. 

 

Fig. 8 Circular convolution of two rectangular sequences of length  . 
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      ∑               

   

   

         

                 

 We observe that the circular convolution of       and       in the time 

domain is expressed in the frequency domain as the multiplication of their discrete 

Fourier transforms. To do this multiplication correctly, both transforms must have the 

same number of samples. This way only the coefficients corresponding to the same 

frequencies multiply each other. To achieve this we need to apply the zero padding 

technique to the shortest signal in the time domain until it reaches the duration of the 

other one. As a result,       and       have the same duration, and therefore, also 

does      . 

 

Fig. 9 Circular convolution of       and       with zero-padding. It is equivalent to the linear 
convolution of the original signals. 

 

 Notice that the result obtained in the time domain by the multiplication 

of       and       in the frequency domain is only correct if these signals are periodic 

in the time domain, i.e., if       and       are truly one period of       and       

respectively. This happens because they are automatically interpreted as such by the 

circular convolution. Otherwise, to obtain the correct result for this multiplication, we 
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need to prepare beforehand the signals       and      . Assuming that they have 

duration    and    respectively, the preparations consist in extending both of them, 

with the technique of the zero padding, until their duration become equal to   

       . This way we make sure that both signals have the same duration in the 

frequency domain, which is necessary to multiply them, and that this duration matches 

that of the linear convolution of the original signals avoiding the overlap. 

 In the application, when we perform the filtering with a filter      of 

duration    of the signal     , i.e., of consecutive       signals, we apply the filter in 

the frequency domain multiplying       by     , but we need to prepare both signals 

in the time domain before we transform them.  

 Specifically, we need to fill       with        samples of      and zero-

pad the last      samples. We also must extend     , again zero-padding, until it 

reaches duration   . As a consequence, both       and      have duration    and 

therefore, their linear convolution         has duration   . However, because of the 

zero-padding, its last    samples are equal to zero, and that is why we can consider it 

to have also duration  . 

 

Fig. 10 Example of the application of the zero-padding to achieve the linear convolution 
through the circular convolution as it is used in the application developed in this thesis. 
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 Recalling that we are actually filtering the signal     , the last      samples 

of         should be affected by the first      samples of the subsequent 

piece         of     , and they are not. To solve this problem, we just need to 

overlap the last      samples of one         with the first       samples of the 

subsequent  (   )     . Through this process we achieve the filtering, piece by piece, 

of      with the filter     . 

 

Fig. 11 Result of the circular convolution of the filter      and every      . After the 
overlapping,      is effectively filtered. 

 

 If it is computationally viable to calculate the convolution between two signals 

in the time domain through the multiplication of their discrete Fourier transforms, it is 

because of the existence of efficient algorithms that reduce, in orders of magnitude, 

the number of operations needed to transform, and inverse transform, these signals. 

In the next section, we will introduce the algorithm that we use in the application 

explaining how does it work and where does its efficiency come from. 
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2.5 The fast Fourier transform 

 

Despite Gauss discovered the first one in 1805, the efficient algorithms for the 

calculation of the discrete Fourier transform, now referred to as fast Fourier transform 

algorithms, did not become useful until the emergence of the digital technology. The 

reason why is that these algorithms truly shine when the number of samples to 

transform exceeds human capacity to use them. 

2.5.1 Definition 

 

Normally, to calculate the discrete Fourier transform of a signal      of duration   we 

require the order of    operations. If we use a fast Fourier transform algorithm, we 

can reduce this number down to the order of        operations [4]. As we said, this 

reduction is significant only for high values of   and is achieved by many of the fast 

Fourier transform algorithms. In our application, we are going to use the Danielson and 

Lanczos algorithm, also known as decimation-in-time algorithm.  

 This algorithm is based, firstly, on the division of a signal into two new signals 

containing the even and odd values of the original signal respectively; and secondly, on 

the possibility to compute the discrete Fourier transform of the original signal as a 

combination of the discrete Fourier transforms of the two new signals. This possibility 

is guaranteed by the Daniel-Lanczos Lemma and it actually decreases the number of 

operations needed. As long as these new signals have an even number of samples, 

they are susceptible to be divided again. Only if the original signal has a number of 

samples   that is a power of  , can we divide it into   signals of   sample. In this case, 

the process takes      ( ) divisions of the original signal. 

 In eq. (2.13), we can see how the division of the discrete Fourier transform of 

the original signal into the discrete Fourier transform of two new signals work. Note 

that       is the discrete Fourier transform of the signal containing the even samples 

and       the one containing the odd samples. 

               
  
                (    ) 

 Therefore, the most beneficial situation to the algorithm is when the original 

signal of duration   can be divided into   signals of   sample, and we can compute 

the discrete Fourier transform of the original signal as the combination of   discrete 

Fourier transforms of   sample. Note that the result of the discrete Fourier transform 

of   sample is the same sample. That is why it is highly recommended to apply the 

algorithm only to signals of duration equal to a power of  . 
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 As we have seen in eq. (2.13), this algorithm uses a pattern that allows us to 

track which of the   samples of the original signal is behind each of the   discrete 

Fourier transforms of   sample. Therefore, we can easily express the coefficients of the 

transformed signal as a combination of its samples.  

 Every time we split a discrete Fourier transform, we give the letter   to the 

discrete Fourier transform of the signal containing the even samples and the letter   to 

the discrete Fourier transform of the signal containing the odd samples. Once we reach 

signals of   sample, each discrete Fourier transform has a pattern of 

length     ( ) that, if reversed, and assuming     and    , represents the binary 

equivalent of the number of the sample used in that discrete Fourier transform. 

                     

          

 If we rearrange the samples of      following the order of the bit-reversed 

binary equivalent of  , we realize that adjacent samples are appropriate to build the 

discrete Fourier transforms of   samples, that adjacent pairs of samples are the 

appropriate to build the discrete Fourier transforms of   samples and that we can keep 

doing this step by step until we combine the last two discrete Fourier transforms 

of   ⁄  samples into the discrete Fourier transform      of the whole signal     . This 

way to organize the samples of      also increases the efficiency of the algorithm as it 

makes the storage of the input and the results of every step much simpler by reducing 

the necessary arrays to just one. 

 

Fig. 12 Example of bit-reversal with 3 bits. 

 

 To reduce the execution time and the storage required of the algorithm even 

more, it is possible, as seen in Subsection 2.4.2, to take advantage of the symmetry 
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properties that the fact that the signal      is real-valued implies, to compute the fast 

Fourier transform of two signals at a time placing one of them as the real part and the 

other as the imaginary part of a regular transform. After the transformation, we just 

need to rearrange the resulting arrays to obtain the real and imaginary part of each 

signal.  

 

 

2.6 Applications of the Fourier transform 

 

To be precise, the mathematical idea of the Fourier series cannot be attributed to J.B. 

Fourier. However, he used it in the study of heat propagation and diffusion, claiming 

that the Fourier series could be used to represent this physical phenomenon and any 

arbitrary periodic signal. Moreover, he was the first one to notice the possibilities and 

potential applications of the Fourier series and the Fourier transform in many other 

fields [1]. 

 Nowadays, the list of applications is very long and the disciplines included are 

very diverse. We can find the Fourier transform in the study of the surface of other 

planets of the solar system or in the analysis of the light that comes from stars; it has 

been used to distinguish between natural seismic events and nuclear explosions; it is 

also one of the main tools for image and sound; etc.  

 As we can see, in most applications the Fourier transform is an essential tool 

in the analysis and processing of different kinds of signals. Regarding sound as a signal 

that can be analysed and processed, the Fourier transform allows us to know which 

frequencies, and with which intensity, are present in any time interval of the signal; It 

is useful to predict how a signal will behave as it passes through a linear time-invariant 

or LTI system, because it enables us to easily obtain the frequency response of such 

system by placing a complex exponential in its input. The result is the multiplication of 

this complex exponential by the frequency response of the LTI system; finally, it is also 

helpful in the process of filtering because, in the frequency domain, it only supposes a 

multiplication of two signals instead of their convolution. 

 Additionally, one of the main reasons of the popularity of the Fourier 

transforms nowadays is the possibility to carry out heavy processes in a more efficient 

way. In this sense, it is important to highlight the fast Fourier transform algorithms. It 

was in the 1960s, and at the hands of of J. W. Cooley and J. W.  Tukey, that these 

algorithms became generally known [4]. 
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 With the arrival of the digital era, these algorithms enabled the computers to 

work with much bigger discrete Fourier transforms and process them extremely fast. 

These advances have obviously had a positive impact on all the fields where the 

Fourier transform is used including the sound processing. That is why the application 

developed in this thesis uses one of these algorithms. 

 

 

2.7 Digital filters 

 

Digital filters are an essential tool for signal processing. They can be described as linear 

shift-invariant systems [2] that let us supress or allow certain frequency intervals. In 

the application we use the Kaiser window as the technique to design the filters. We 

can see in eq. (2.14) that this window is defined as the quotient of two modified Bessel 

functions of zero order of the first kind [6], whose equation we present in eq. (2.15). 
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 This technique starts with the design of an ideal filter in the frequency 

domain, i.e., with the establishment of the cut-off frequency   , through the selection 

of the pass-band    and the stop-band    frequencies. In the case of the band-pass 

filter, where we have two cut-off frequencies     and     with         , we also 

need to choose the central frequency   . With these three frequencies we are able to 

calculate both cut-off frequencies. The cut-off frequencies are very important because 

they are the only variables of the equation of an ideal filter in the time domain, as we 

can see in eq. (2.16) for the ideal low-pass filter and in eq. (2.17) and eq. (2.18) for the 

ideal high-pass and band-pass filters, respectively. Unfortunately, this equation is 

infinite, and therefore, we need to cut it with a window, specifically, the Kaiser 

window. 
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Fig. 13 Kaiser window with       points and        . 
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 The creation of the window relies on several empirical expressions to provide 

the basic variables   and  , which define the windows shape and duration, with a 

numerical value. To be able to compute these empirical expressions we first need to 

supply them with the frequency specifications of the filter, namely, the pass-band   , 

the stop-band    and the maximum ripple   for both of these bands. The basic 

variables require the calculation of many other variables. We enumerate them for the 

case of the low-pass filter as an example. Note that    is the transition band, and   is 

the inverse square of the ripple, represented in decibels. 
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 The actual filter that we use results from the multiplication of the ideal filter 

by the Kaiser window. To apply it, as we said in Subsection 2.4.2, we need to zero-pad 

it in the time domain until it matches the number of samples of the signal       that it 

has to multiply in the frequency domain, i.e.,   samples.  

 

 

2.8 Frequency interpolation 

 

The coefficients of the spectrum represent only the amplitude of a limited number of 

frequencies. In any sound, most of the existing frequencies are not among this limited 

group; therefore, most of the times, a frequency of the sound     with maximum local 

amplitude does not correspond to the frequency of the coefficient of the spectrum    

where we see this maximum. A good way to increase the accuracy in the placement of 

these local maxima on the screen is to improve the frequency resolution around these 

maxima.  

 A way to do this is to create a continuous Gaussian curve   ( ), where   is the 

continuous version of  , that goes through the amplitude of the coefficient where we 

see the maximum       and the amplitude of the two surrounding coefficients, 

i.e.,         and         and sample it with a certain interpolation rate   . The 

position of the maximum of the curve    depends on the value of the amplitude of 

the surrounding coefficients, i.e.,          and        . There are two possible 

situations: when                , both    and    coincide; if         

        or                , then    moves towards the coefficient with 

the highest amplitude and no longer coincides with   . In the second case, the 

frequency corresponding to    is a better approximation of the original frequency 

than   . In eq. (2.19), we present the equation of the Gaussian curve and in eq. (2.20) 

the expression that allows us to find    [11]. 

  ( )   ( (    )   )          (    ) 
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          (    ) 

 The fact that we interpolate the spectrum around the local maxima requires us 

to do the same for every pair of coefficients in order to keep a constant frequency 

interval between all of them. However, in the application, between the coefficients 

that are not local maxima or surround them we only interpolate zeroes, which are 
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disregarded in the spectrum’s visualization process. The resulting frequency resolution 

around the local maxima is    times lower. 

 Now that all the theory has been explained, we are prepared to start 

introducing more specific content regarding the application. In the next chapter we will 

establish the requirements that should be fulfilled and we will explain, in general 

terms, the prototype designed to meet them. 
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3 
Overview over the Project 

 

We will now put ourselves in the shoes of the users to think about the expectations 

they might have regarding the application developed in this thesis. In Section 3.1, we 

will analyse these expectations in order to extract the requirements that we will 

impose to it, and we will arrange these requirements in a priority order. 

 After that, in Section 3.2, we will proceed with a general exposition of the 

designed prototype defining the stages that form the whole process of the application 

and the detail steps to follow in every stage. Eventually, we will establish the 

connections between these steps and the fulfilment of the requirements. 
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3.1 Requirements engineering 

 

It is very important to establish a set of requirements for the application to fulfil, and it 

must be done in an early phase of the project, because they should serve as an 

objective for the programming process and as guide for the decision making. As we 

said, the aim of this section is to discuss what set of requirements should be 

established for the application. 

 

 

3.1.1 Requirements analysis 

 

We have spotted eleven requirements that might be necessary for the user to be 

satisfied with the application. We gather them in four groups that we name precision 

requirements, clarity requirements, creativity requirements, and output requirements. 

 The precision requirements are those that, when met, make the user feel that 

he is doing exactly what he intends to, when he intends to. Concerning the application, 

it implies an accurate application of any manipulation of the spectrum, and this means 

providing the user with as much information as possible about what he wants to do; it 

also demands an immediate response in the visual and audio outputs to any 

manipulation that comes from the user; and finally, it requires a good synchronization 

between both media types. 

 

Fig. 14 Precision requirements. 
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 On one hand, the output requirements compel the application to produce an 

audio output that can be deemed useful or artistic, i.e., meaningful in some sense. On 

the other hand, they demand quality preservation. This implies avoiding any kind of 

distortion and generally, maintaining the quality of the original audio file despite the 

modifications applied. 

 

Fig. 15 Output requirements. 

 

 The creativity requirements involve the options of sound manipulation that 

the application can offer. Specifically, they refer to the variety of effects included, and 

the possibility to interact with them once applied as well as to use more than one of 

them at the same time. 

 

Fig. 16 Creativity requirements. 
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 The clarity requirements demand an application that is intuitive and is easy to 

understand and use. This includes a clear disposition of the different elements on the 

screen, the differentiation between the representation on the screen of the various 

manipulation options and the frequency spectrum, and a way to control the 

application that is simple, intuitive, and easy to access. 

 

Fig. 17 Clarity requirements. 

 

 

3.1.2 Priorities 

 

All of these requirements affect different parts of the application and have a different 

impact on the application performance. In this section, we assign a priority value to 

every requirement. The parameters that we consider for this assignment are three: 

i. Their influence on the proper functioning of the application.  

 

ii. Their relevance to the achievement of the overall goals. 

 

iii. Whether they need to be fulfilled entirely or if just a certain degree of 

fulfilment is sufficient.  

 The priority values assigned range from 1 to 3. A priority equal to   means 

that the requirement must be completely fulfilled for the application to have an 

acceptable behaviour. A priority equal to 2 or 3 implies that the requirement should be 

met at least in a high or medium degree, respectively. However, their complete 

fulfilment is only necessary to achieve the optimal functioning of the application. 
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Requirement Priority 

Precision: Accuracy 2 
Precision: Immediacy 1 
Precision: Synchronization 1 
Output: Meaningful modifications 3 
Output: Quality preservation 1 
Creativity: Variety of the modifications 3 
Creativity: Interactive modifications 1 
Creativity: Coexistence of modifications 2 
Clarity: Disposition of the elements 2 
Clarity: Differentiation of the elements 2 
Clarity: Easy control 2 

 

Table 2 Priorities of the requirements. 

 

 The fact that the manipulation of the spectrum is applied in real-time gives 

the precision in the time domain great importance. We cannot allow a perceptible 

delay between the instant when the user wants to apply the manipulation and the 

instant when it is actually applied. In addition, we must ensure that the spectrum we 

see on the screen corresponds to the audio we hear at the output. On the other hand, 

the precision in the frequency domain, i.e., to which frequencies we are applying the 

modifications, is not as crucial for the performance of the application. However, a high 

level of accuracy is needed for the user to feel that he is doing what he intends to. 

 The visual aspect of the application is very important. It must guarantee that 

the user can grasp the details of any situation rapidly, identify the different elements 

on the screen, and have easy access to the controls. Even though this is essential for 

the optimal performance of the application, it can show acceptable behaviour despite 

these requirements not completely being met. 

 To enhance the creativity of the application, it is important to achieve a 

significant variety of manipulation options, but it is not the only way to do it. The 

possibility to interact with a manipulation once applied or to use two or more of them 

at the same time are alternative ways to strengthen the creative side of the 

application. As requirements, these are not vital for the application. However, the third 

of the challenges stated in Section 1.3 concerns the creativity, and therefore, we must 

give them an according priority value. 

 One of the most important requirements is the quality preservation of the 

original file. It is important to avoid or minimize any possible distortion, noise, etc. that 

could stain the sound at the output. In the background stays the achievement of 

artistically interesting or useful modifications of the sound. 
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3.2 Design prototype 

 

Having established the requirements and our priorities towards them, we can describe, 

in a generic way, how to design the application in order to fulfil them. We define five 

general stages, namely, initialization, data acquisition, spectrum manipulation, 

spectrum management and playback and visualization. The first one prepares the 

ground for the subsequent three stages, which succeed each other forming a cycle that 

constitutes the core of the application and ends only when all the data has been read. 

The fifth stage needs the information coming from both the third and fourth stages, 

but its pace is not bound to the cycle; actually, it is rather the opposite. Each of these 

stages has its own main tasks to be developed.  

 

Fig. 18 Cyclic data processing. 
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 As we have said, the first stage carries out all the preparations that allow the 

proper development of the following stages. This includes setting the layout of the 

activity; extracting essential parameters from the wave file to initialize views and 

objects of various classes; assigning values to different parameters; etc. Its last process 

is to trigger both the playback of the audio output and the thread that starts the cycle 

formed by the stages two, three and four. 

 The tasks developed in the second stage are to extract a part of the data of 

the wave file and prepare it to become the signal, whose spectrum we want to 

manipulate and visualize. Once we have obtained the signal, we need to prepare it to 

be transformed with the fast Fourier transform algorithm.  

 The third stage begins with the application of this algorithm, and continues 

with the manipulation and the following storage of the resulting spectrum. The fourth 

stage starts with the computation of the magnitude of the spectrum and then 

proceeds to modify it in order to improve its visualization. As we can see, both stages 

overlap in time, but can be conceptually separated: stage three is related to the signal 

to be played and stage four to the signal to be visualized. 
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Accuracy   + +   

Immediacy     + + 
Synchronization    + + + 

Meaningful modifications   + +   
Quality preservation  + + + +   

Variety of modifications   + +   
Interactive modifications   + +   

Coexistence of modifications  + + +   
Disposition of elements + +     

Differentiation of elements + +     
Control   +   

 

Table 3 Distribution of the requirements by stages. The symbol “+ +” means that the 
requirement is mainly fulfilled in that stage, and the symbol “+” means that only some details 

of that requirement are met in that stage. 



Interactive Spectral Manipulation of Music on Mobile Devices in Real-Time 

40 
 

 As we said, the last stage works independently from the other four, but 

requires all the data that we store in stages three and four. It basically plays the audio 

output and synchronizes it with the spectrum visualization. 

 Table 3 shows which stages are involved in the fulfilment of the different 

requirements. On one hand, we can see that all requirements related to the 

modifications and their correct application and control, are dealt with, mainly, in stage 

three. This includes the need for a high level of accuracy in and control over the 

application of the manipulations. Only the coexistence of these modifications, and just 

in some cases, demands the preparation of the signal in stage two. On the other hand, 

the demand for immediacy in the response to the user actions and the synchronization 

between the audio output and the visualization of its spectrum falls into stage five, 

even though the storage of both media types is done in stages three and four.  

 Finally, we observe that stage one is responsible for the disposition and 

differentiation of the elements on the screen as it is where we set the contents of the 

view of the activity, and that the task of preserving the quality of the original signal is 

shared equally between stages two, where the signal must be appropriately prepared, 

and three, where it must be carefully manipulated. 

 In the next chapter we will further detail the implementation of the different 

parts and features of the application. We will base the structure of the explanation on 

the stages defined in this section, even though the content covered will be wider. 
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4 

Implementation 

 

Up until now we have generally explained the functioning of the application describing 

its various stages and explaining their roles and the relationship between them. 

Specifically, in Section 3.2, we defined a cycle for the first three stages that can be 

understood as the engine that keeps the application working. It is one of the aims of 

this chapter to establish how this cycle fits into the actual code of the application. 

Thus, we will thoroughly explain the activity that contains it. 

 It is important to outline that we will describe only one of the two activities of 

the application. This activity is called Cycle activity and we will devote sections 4.1 to 

4.5 to explain it. Each one of these sections will take care of the description of one of 

the stages described in Section 3.2. We will relate the main tasks that they develop 

and explain every step needed to accomplish them. For a visual and more detailed 

description of the tasks that are carried out in each stage, see Appendix A. 

 The other – not described – activity basically looks for the wave files available 

and shows them on the screen in the form of buttons. When one of these buttons is 

clicked, the Cycle activity triggers. We deem that this brief description is enough for 

this activity; hence we will not assign a section to it. 

 Before we start relating the contents of this chapter, we need to do a brief 

clarification about the name that we give to the data that we manipulate during the 

different processes that form the application. This name changes according to the 

phase in which the data is. Once extracted from the wave file, the data becomes the 

signal that we transform to the frequency domain to manipulate its spectrum 

coefficients. After the modifications we inverse-transform the signal and it becomes 

the output signal that is stored in a buffer for playback. 
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4.1 Stage 1: initialization 

 

 As we have said, the processes that take place during the initialization stage lay 

the foundations on which the rest of the application is built and allow its proper 

functioning in every stage. Specifically, the tasks that this stage accomplishes are the 

following: 

1. Establishes a pre-programmed xml layout as the content to be visualized for the 

duration of the cycle activity. This layout dictates the distribution of the 

elements on the screen. Additionally, we place these elements inside objects to 

be able to interact with them. 

2. Creates a stream of bytes that is bound to the wave file. Through this stream 

we can read its contents and handle it much easier, avoiding the memory 

problems that can derive from interacting with such big files. 

3. Extracts essential parameters for the initialization process from the header of 

the wave file. In Subsection 4.3.1, we describe these parameters. 

4. Initializes the necessary classes, arrays, variables and other parameters.  

5. States the disposition of the buttons of the manipulation menu through a pre-

programmed xml menu and handles their call-backs. Additionally, it establishes 

how these buttons interact with the class responsible for the application of the 

manipulations. 

6. Sets the method that informs the application every time the user performs an 

action. 

7. Prepares the method that controls the seek bar. 

8. Starts the playback and triggers the thread that contains the cycle of stages. 

 The layout of the activity contains a number of views. All of them are always 

there, but some of them are not visible the entire time. There are some views that 

belong to a certain manipulation, i.e., they show only information about that 

manipulation, and are only visible when the manipulation is being applied. We refer to 

these views in Subsection 4.3.3, where we describe each kind of manipulation; in this 

section we only describe the elements that are not related to any manipulation. 
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Fig. 19 Basic layout of the application. 

 

 As we can see in Fig. 19, there are only four different groups of elements in the 

screen. With (1) we refer to the red line that represents the spectrum of the signal. 

The specificities of this representation are explained in Section 4.5; (2) is attached to 

the manipulation menu that requires a more thorough explanation, which we provide 

in Subsection 4.4.2; (3) includes various text views that show information such as the 

frequency or amplitude corresponding to the last position of our finger on the screen, 

the amplitude of the filters of the equalizer, etc., as well as the frequency and 

amplitude scales. These scales are also detailed in Section 4.5; (4) points at a seek bar 

that allows us to freely move to any point of the wave file, to have an approximate 

idea of its total duration and to know our current position in it. Additionally, when we 

place a finger on the screen, two yellow lines appear that cross in that same position. 

 One of the most important tasks developed in this stage is the obtaining of 

some essential parameters for the initialization of every object. A wave file is divided 

into two main parts: the header, which takes up 44 bytes [10], and the data. The 

header of a wave file contains a lot of information about the data that comes after it. 

However, of all this information we are only interested in five parameters.  

1. Format: it refers to the way in which the analogue signal has been digitized and 

stored in the file. The most usual format and therefore, the one that we use is 

the pulse code modulation, as we said in Section 2.1. 
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2. Number of channels: depending on this parameter, the data inside the wave 

file is played as mono or as stereo. The application only admits wave files 

defined as mono. 

3. Sampling rate: the number of samples that we take of the analogue signal every 

second. 

4. Bits per sample: the number of bits that we use to represent the value of every 

sample. 

5. Size of the data: the number of bytes that form the data of the wave file. The 

bytes corresponding to the header are not included. 

 In order for the application to have access to these parameters when needed, 

we must store them. To do this, we have to create a stream of bytes that allows us to 

read the information inside the wave file, and we must go through the content of the 

header discarding the information that is irrelevant to the application and storing the 

value of the parameters mentioned above. Finally, we have to check if these values are 

among the ones accepted by the application. If they are not, the activity finishes 

promptly. 

 

 

4.2 Stage 2: data acquisition 

 

This stage is basically responsible for the extraction and preparation of the data 

contained in the wave file that ultimately constitutes the signal we want to 

manipulate, store and play in the following stages.  

 In Section 2.4.2, as we were describing the time and frequency resolutions, we 

mentioned the fact that the application cuts the whole data into smaller parts in order 

to achieve an agreement between both resolutions. The parameter that establishes 

the maximum number of samples that we can extract in every loop is called capture 

rate. In case we are applying certain manipulations, the number of samples extracted 

can be lower than the value of this parameter. 

 In Chapter 2 we already introduced some limitations to the possible values of 

the capture rate. Specifically, we explained that the fact that we use a fast Fourier 

transform algorithm demands it to be a power of two. The value required must be low 

enough to have a time resolution that allows the application to track most of the 

changes of the music such as fast notes or silences; and at the same time it must be 
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high enough to have a frequency resolution that lets us distinguish between close 

notes. The value that we consider the best for both the frequency and the time 

resolutions is 4096 samples. This value was found heuristically. 

 The spectrum analysis is closely related with the usage of windows. The 

application of windows other than the rectangular, which is always implicit in a data 

extraction such as the one we do, brings many benefits but also some disadvantages 

[16]. For instance, they allow the reduction of the impact of the side lobes or the 

spectral leakage, which are high for the rectangle window, but increase the width of 

the main lobe. There is also the possibility to remove them if they fulfil the perfect 

reconstruction condition [12] in case we want to recover the original signal after the 

spectral analysis. 

 In our case, the fact that we not only analyse the spectrum but also manipulate 

it makes it impossible to apply the window in the time domain. That is why, if we want 

to apply one, we must do it in the frequency domain as explained in Chapter 2. 

Whether we should apply a window or not depends only on the improvements that we 

might observe in the final representation of the spectrum as it does not bring any 

other issue. We have tried the Hanning, the Hamming and the 5-terms Blackman 

windows [15], and we consider that neither of them improves the visualization of the 

spectrum. The growth of the main lobe is the main reason for discarding the usage of 

windows as we want to be able to distinguish between close notes. 

 Once the data is extracted, we must subject it to some operations for it to 

become the signal that we want to apply the fast Fourier transform to. This algorithm 

works with arrays of doubles as data type because of the precision that the decimals 

provide. For proper conversion from bytes to doubles we must pay attention to the 

endianness of the data, and to the bits per sample of the wave file to avoid breaking 

the samples up. 

 

 

4.3 Stage 3: spectrum manipulation 

 

When we reach this stage, the signal is already prepared for the computation of its 

spectrum, and to endure any of the manipulations available. This section aims to 

describe the details of the transformation and inverse transformation processes and to 

examine how we apply and interact with the various manipulations that the 

application offers. 
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4.3.1 Fast Fourier transform and its inverse 

 

We already explained how the fast Fourier transform algorithm works in Chapter 2. 

Therefore, in this subsection we focus on the particularities of the way this algorithm is 

used for both ways of the transform in the specific case of the application developed in 

this thesis.  

 For the spectrum computation, we outline the usage of the symmetry 

properties, described in Subsection 2.4.2, that the fact that the signal is real-valued 

implies. The symmetry of the spectrum allows us to compute the fast Fourier 

transform of two signals at a time, as explained in Subsection 2.5.1. This almost 

reduces the execution time of the fast Fourier transform process to 50% and its impact 

on the application is decisive to be able to apply heavy manipulations such as very 

restrictive filters. 

 The same way we prepare the data to create a signal that is suitable for the fast 

Fourier transform algorithm, we need to adapt the array that contains the signal 

resulting from the inverse fast Fourier transform for its playback. We do this by 

changing the data type of this array from double to byte or short depending on the 

bytes per sample parameter of the current wave file. 

 However, due to the manipulation of the spectrum, we cannot guarantee that 

the values of the output signal are still inside the range of the byte or short data types. 

Any sample that exceeds the highest value of this range is cut to this same value, 

producing a saturation effect in the output signal. To avoid this, before changing the 

data type of the array we need to normalize it to the highest value of the range of the 

new data type. After that, we place the signal in the buffer where it waits to be played. 

This buffer has a limited size, and when it is full and the application wants to write in it, 

the application becomes blocked. This could be interpreted as undesired, but actually 

it is very important for the proper functioning of the application as we explain in 

Section 4.5. 

 

 

4.3.2 Spectrum manipulation system 

 

The spectrum manipulation is one of the most crucial steps of the application and 

probably the most complex. It is important to note that this step is automatically 

skipped as long as we are not applying any manipulation. Once we click a button from 
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the manipulation menu other than the reset button, the application starts checking 

which manipulations are active every time it reaches this step of the cycle and apply 

them to the spectrum. If, eventually, we stop every manipulation, for instance, by 

means of the reset button, this step will be skipped again in subsequent loops of the 

cycle. For an accurate explanation on how to apply, interact with and cancel the 

different manipulations, see Appendix B. 

 

Manipulation states 

 The manipulation menu allows us to control the application, modification and 

removal of every manipulation; to manage their coexistence making it possible to work 

individually with each one of them avoiding interferences and undesired results; and 

to keep track of their state at any moment. 

 A way to divide the manipulation is by the number of states they can be in. On 

one hand, there are the 2-states manipulations. The states are inactive and active-

unlocked. For this kind of manipulation, the first click on the button activates it and 

either a second click or a click on the reset button deactivates it. Additionally, this type 

of manipulation only applies when two conditions are fulfilled: the state has to be set 

as active-unlocked and we must be currently interacting with the application, i.e., 

touching the screen.  

 

Fig. 20 Flow of the states for 2-states manipulations. The green arrows represent a 
manipulation’s button click and the red ones a click on the reset button. 

 

 On the other hand, there are the 3-states manipulations. The states are 

inactive, active-unlocked and active-locked. The main difference between the two 

types is that the 3-states manipulations, once applied and active, take effect even 

when the user is not interacting with the application through the screen. In this case, 

the interaction of the user aims to modify the parameters of the manipulation to vary 

its effect on the signal. This interaction is only allowed when the state of the 

manipulation is set to active-unlocked; if we set it to active-locked, the manipulation 

keeps taking effect but we are not able to modify it. This way we can freely touch the 
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screen to add other manipulations, interact with them or even remove them without 

worrying about the ones in the active-locked state. 

 

Fig. 21 Flow of the states for 3-states manipulations. The green arrows represent a 
manipulation’s button click and the red ones a click on the reset button. 

 

Mask control system 

 The key for the implementation of this control system is what we call masks. A 

mask is basically an integer that is bound to a manipulation. There is a mask for every 

manipulation and the only requirement they must fulfil is to be orthogonal to any 

other mask, i.e., the result of their binary multiplication must be equal to zero. The 

easiest way to do this is to assign values to these masks that are a power of 2. 

Additionally, there are two special masks that do not belong to any manipulation. We 

call them mask-unlocked and mask-locked. They start being equal to zero and do not 

have to be orthogonal with the other masks.  

 Every time a manipulation is set to the active-unlocked state we add its mask 

value to mask-unlocked. If we remove or lock this manipulation we subtract this value 

from this mask. The case of the mask-locked is similar: once a manipulation is set to 

the active-locked state, we add its value to this mask and when it is unlocked we 

subtract it. This way the value of the mask of a particular manipulation cannot be in 

both special masks at the same time.  

 Note that the multiplication of a specific manipulation’s mask by both of the 

special masks allows us to find out the current state of this manipulation. This is the 

method that we use every time a signal reaches this stage of the cycle to know what 

manipulations it must be subjected to. Additionally, both special masks are used in the 

process to set the parameters of the manipulations that need it to make the process 

more hermetic. 
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4.3.3 Types of spectral manipulations 

 

In this subsection we describe details of the different kinds of manipulations that the 

application offers such as what is their effect and how we visualize them, which is the 

process we must follow to apply them, how can we interact with them once applied, 

what information does the application need to handle them, etc. 

 

Synthesizer 

 The synthesizer allows us to add a new signal to the one that has been 

extracted from the wave file and also to modify its spectrum coefficients. The new 

signal consists of a fundamental frequency, which compulsorily is among those of the 

chromatic musical scale, and its five subsequent harmonics. Initially, all of them have 

the same amplitude. However, we can change that in order to modify the sonority of 

the added signal. 

 Most of the frequencies corresponding to the chromatic musical scale are not 

represented in the spectrum that we show on the screen; therefore, we cannot add 

the new signal through the direct summation of some coefficients to the spectrum. 

The process that must be followed consists in the creation of the signal in the time 

domain, its transformation to the frequency domain using the fast Fourier transform 

and the addition of the result to the spectrum of the extracted signal.  

 To create the signal in the time domain the first step is to generate as many 

samples of the fundamental frequency and every harmonic as necessary for them to 

start and finish with a sample of, practically, the same amplitude. Specifically, we stop 

the sample generation only when we reach a sample, whose amplitude value is 

between the amplitude values of the first sample, i.e., 1, as we create cosines, and the 

second sample as shown in Fig. 22. A finite signal is enough because we can infinitely 

read it if we use its length as modulo. The errors introduced because of the inaccuracy 

of the method are unnoticeable. 

 Knowing this, we extract from each one of these harmonics the same number 

of samples that we are acquiring from the wave file at that moment and sum them 

after multiplying them by the coefficient established by the position of our fingers on 

the screen. This is the signal we want to transform and then sum to the current 

spectrum of the wave file. 
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Fig. 22 Harmonic creation method. The value of the amplitude of the last sample is between 
that of the first and second samples. 

 

 The representation in the spectrum of a frequency that is not a multiple of its 

frequency resolution has more implications. Specifically, this representation does not 

result in a single line but a bunch of them in an attempt to achieve the best 

approximation. In consequence, even though initially the amplitude of every harmonic 

is the same, we do not see six equally long and equally spaced lines but something 

more complex. 

 This manipulation has only two states: active and inactive. Once we click the 

button on the manipulation menu, the manipulation is set to active and the screen 

responds to our actions. The first finger we place on the screen establishes the 

fundamental frequency and the general amplitude of the signal added. Each 

subsequent finger modifies the amplitude of the next harmonic. If we click the button 

again or use the reset button, the state is set to inactive. 

 There is no exclusive view for this manipulation. Its results are summed to the 

spectrum of the signal extracted from the wave file and, in consequence, they appear 

in the same view. 

 

Filter 

 One of the most important tools of signal processing is the filter, and in this 

application we use them as well. Specifically, we have access to low, high and band-

pass filters. For any filter we can define its pass, transition and attenuation bands by 

setting the pass and attenuation frequencies and also, in the case of the pass-band 

filters, the central frequency. The attenuation in these frequencies, as well as the 

amplitude of the filter, is out of the user’s control. 
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 As we said, in the case of a band-pass filter, we must provide three parameters 

through our interaction with the screen: the central, the pass and the attenuation 

frequencies. For the first parameter it is mandatory to drag one finger over the screen 

to the desired frequency because this movement is the one that differentiates a pass-

band filter from a high or low-pass filter. For the other two parameters only a tap on 

the screen is required, but we must bear in mind that the attenuation frequency must 

be higher than the pass frequency, and that both of them must be higher than the 

central frequency. Otherwise, the filter does not appear and the process must be 

started again. 

 For the high and low-pass filters we must tap one time on the screen to let the 

application know that we do not want a pass-band filter, and then tap two more times 

to set the pass frequency and the attenuation frequency. We assign the values to the 

frequencies always in this order. Depending on which of them is higher, we obtain a 

high or a low-pass filter. 

 We explained in Section 2.4.2, that to properly filter the signal we have to 

prepare it with the zero-padding technique before we transform it, and also to take 

care of the overlap of the result of the inverse transform. To know how many zeroes 

we have to insert in the signal we need the filter to be able to tell us its order. We 

must take into account that not only the filter manipulation uses filters, also the 

equalizer does. Therefore, every time that a loop of the cycle starts, we ask the 

manipulations that use filters and that are active at the moment for the order of their 

filters and take the biggest order to apply the zero-padding. We use the same value to 

solve the problem of the overlapping. 

 

Fig. 23 Example of the filter manipulation. 
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 Only if the manipulation’s state is set to active-unlocked, we can interact with 

the filter. To do this we just need to do the same process that we did to apply it. When 

we click the button again, the state changes to active-locked and the filter becomes 

immune to any interaction coming from us and maintains its effect. 

 Unlike the synthesizer, this manipulation has its own view. As we can see in Fig. 

22, it takes up the same space as the view for the coefficients of the spectrum and 

contains the shape of the magnitude of the frequency response of the filter painted 

with a green line. Note that this shape is represented linearly in the amplitude axis and 

logarithmically in the frequency axis; therefore, the values in decibels written on the 

screen do not apply to it. Additionally, during the application and as long as the filter is 

active, we can see information about it in the top of the screen. 

 

Equalizer 

 Even though this manipulation is designed to allow the user to subtly change 

the sonority of the signal by emphasizing certain frequency intervals and mitigating 

others, it is possible for the equalizer to change the sound significantly and in some 

interesting ways. This can be achieved with a bank of 10 filters that cover the entire 

spectrum.  

 

Fig. 24 Example of the equalizer manipulation. 
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 To apply the equalizer we just need to click on the manipulation menu and then 

tap on the screen. After this, in the screen appear ten bars. The bars show the current 

amplitude of each filter and, by tapping on the screen, we can modify them. All these 

bars are contained in the equalizer’s own view. Additionally, this manipulation uses a 

text view where we can see the current amplitude of the last filter that we modified. If 

we click the button again, setting the state of the equalizer to the active-locked, and 

tap the screen, the equalization keeps taking effect but we can no longer see the bars. 

 The range of the amplitude of the filters goes from 0 to 2 and each one of them 

affects exactly the frequency interval that is under the corresponding rectangle and 

that coincides with those established by the standards [19] [20].  

 

Reset 

 The reset button stops the manipulations. It is especially important for the 

manipulations that can be in the active-locked state because it is the only way to 

cancel them. Once the button is clicked, the next tap on the screen stops any 

manipulation that is active or active-unlocked. The reset has no effect on the 

manipulations that are in the state active-locked or that are already inactive. Note that 

if there is no manipulation in an active-unlocked state, the reset button does not 

respond. This includes the cases when no manipulation is being applied and when all 

the manipulations applied are in the active-locked state. 

 

 

4.4 Stage 4: spectrum management 

 

This stage starts after the application of the fast Fourier transform. It basically 

computes the magnitude of half of the spectrum, as it is symmetric and we only 

visualize its first half, and modifies it in order to improve its visualization. Afterwards, it 

stores the result of these modifications in an array list where it waits to be called when 

the corresponding output signal is being played. 

 The first step is to apply the interpolation technique explained in Chapter 2. 

This greatly improves the frequency resolution of the maxima and also provides a 

pleasant shape that improves the visualization especially for the low frequencies up to 

300 Hz. Due to the way we visualize the spectrum, which is explained in the next 

section, the benefits of this technique for higher frequencies are too low and the 

computation effort is too high. Thus, we only apply it to the low frequencies. To do it 
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we need to identify, beforehand, all the local maxima of the spectrum and space every 

coefficient a number of samples equal to the interpolation rate, which is set to 8. This 

way we are able to fit the sampled Gaussian curves in every maximum.  

 The last step before storing the spectrum is to apply the loudness contour as it 

is defined in [17]. This helps to make the spectrum more coherent with the sound that 

we hear. After this process, the spectrum is ready for its visualization. In the next 

section we specify the kind of visualization we use and how it synchronizes with the 

playback of the corresponding output signal. 

 

 

4.5 Stage 5: playback and visualization 

 

The fifth stage of the application aims to play the output signals and to show the 

magnitude of the spectrum on the screen in a synchronized way. In this section we 

give some details of both processes and eventually explain how the application 

achieves their synchronization. 

 As the output signals must be played at the appropriate rate, stage five has its 

own rhythm. Additionally, as we introduced in Section 4.3.1, it has the capacity to 

block the cycle of the previous three stages when the buffer where the output signal is 

stored is full. This blocking works in our favour because it prevents large accumulations 

of manipulated signals in the output that would result in a long delay between the 

instant when we apply the manipulation and the instant when the results would be 

heard and also visualized on the screen. 

 The secret of the synchronization between the output signal and the spectrum 

visualization is the possibility to receive a notification when the application has played 

a certain number of samples. We have to set the notification period to be equal to the 

number of samples that we are currently extracting in every loop and with every 

notification release one of the arrays containing the magnitude of the spectrum and 

show it on the screen. 

 When we want to change the number of samples extracted, for instance, 

because we apply a filter, we also have to change the notification period. However, we 

cannot do this immediately because there are already some arrays in the list of the 

spectrum magnitudes that must still be called with the previous period. We have to 

make sure they have all been shown before changing the notification period. 
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 Regarding the visualization of the spectrum, the coefficients are organized on 

the screen by octaves starting at 20 Hz and ending at 20 kHz [18] and a red line unites 

the amplitude value in decibels of each of them with the next one. The values of the 

frequency scale correspond to those specified in the standards [19] [20]. The values for 

the amplitude start at 0 dBFS and go down to a value that includes the lowest possible 

amplitude value for the bits per sample of the wave file. Despite that, the coefficients 

of the spectrum might take values whose amplitudes in dBFS are much lower. Then, 

we use eq. (4.1) to assign a position on the screen, i.e., the     pixel column, to each 

frequency coefficient. 

       (
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 In the next chapter, we will evaluate the implementation of the application 

detailed in this chapter, according to the requirements set in Chapter 3. 
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5 
Evaluation 

 

In Chapter 4 we have thoroughly described how we have implemented the application. 

Now it is time to assess in which degree this implementation fulfils the requirements 

that were established in Chapter 3 and achieves the goals.  

 We will use two different methods to evaluate the application: an analysis of 

technical aspects such as execution times, etc., which will focus on the objective 

requirements like the immediacy of the manipulations in the application or the quality 

of the output signal; and a survey that will help us collect and organize the sensations, 

thoughts and opinions of number of test users. The survey will cover all requirements, 

specially focusing on the subjective ones such as those related to the creative 

possibilities of the application. 

 In Section 5.1, we will discuss the most relevant technical aspects and their 

relation to the requirements. Section 5.2 will be devoted to explain the particularities 

of the test that every candidate will carry out. The questions that we will ask them in 

the survey will be explained and referred to the requirements in Section 5.3. Finally, 

the result of the evaluation will be shown in Section 5.4. 
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5.1 Technical aspects 

 

Capture rate 

In Subsection 4.2.2, describing the assignment of a value to the capture rate, we said 

that 4096 is the limit that we recommend for this constant. In eq. (5.1) we indicate the 

time resolution    of the application using a capture rate        and a sample 

rate                  ⁄ .  

       ⁄           

                                        ⁄           (   ) 

 Any capture rate value beyond 4096 makes the application start to show 

noticeable delays in the spectrum's follow up of the audio output. The reason why is 

that any frequency existing in the number of samples captured is shown in the 

spectrum for the whole duration of these samples even if it is present only for a 

shorter amount of time. This is especially harmful when there are abrupt changes such 

as silences that start, for instance, in the middle of the extracted samples or fast notes.  

 In eq. (5.2), we can see the frequency resolution that corresponds to the 

established capture rate. We consider that this resolution value is low enough for the 

purposes of the application. However, it can be difficult to distinguish between close 

low notes, which differ only by a little more than 1 Hz, but the error is greatly reduced 

using the Gaussian interpolation technique [11] explained in Section 2.8 that divides 

the resolution by 8 around the local maxima. 

                       ⁄     ⁄                    (   ) 

 Each octave contains a different number of frequency coefficients as the 

frequency intervals change from one octave to another. However, the space they 

occupy on the screen is the same. The frequency resolution specified in eq. (5.2) is only 

valid for those octaves that contain a number of frequencies which is lower than the 

number of pixel columns available to them. The other octaves cannot represent all the 

coefficients assigned to them and, as a consequence, the frequency resolution 

increases. The number of octaves contained in each group depends on the sample rate 

of the wave file, but for the lower octaves it is easier to maintain the frequency 

resolution unchanged, as their frequency intervals are lower. 

 As said above, not every frequency coefficient has its own pixel column, as 

there are 2048 coefficients to be represented and tablet screens are not usually wide 

enough for that. However, there is a frequency for each pixel column even if it does 
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not coincide with the frequency of any coefficient. In eq. (5.3), we show the formula 

we follow to assign a frequency   to the pixel column number  . 

    (
           

     
)  

(
 

              ⁄
)
       (   )   

 Note that the frequency interval between low   pixel columns is much lower 

than for high   pixel columns. Therefore, the accuracy in the application of the 

manipulations that we can achieve for low frequencies is higher than for high 

frequencies. To assess this accuracy, we must establish the value of the parameters of 

eq. (5.3), and define two references. Specifically, we use a sample rate equal to 44100 

Hz and a tablet width equal to 1280 pixels. 

 If we use the frequency interval between notes as a reference for the 

assessment, the results are very satisfactory. The lowest interval between pixel 

columns is approximately 0.1 Hz at 20 Hz. Around these frequencies the interval 

between notes is approximately 1 Hz, i.e., one order of magnitude bigger.  

 The highest interval between pixel columns is approximately 110 Hz and it 

corresponds to the last 2 pixel columns. The frequency corresponding to the last pixel 

column is 20480 Hz. The almost inaudible sounds around this frequency are separated 

by more than 1000 Hz, an interval, again, an order of magnitude higher than the 

frequency interval between pixels. 

 In [22], it is stated that the frequency resolution of the ear within the octave 

from 1000 Hz to 2000 Hz is 3.6 Hz. The highest interval between pixel columns inside 

this octave is approximately 10 Hz, i.e., almost three times the ear resolution. With this 

second reference, the accuracy of our application cannot be considered as good as 

with the first one. Still, we believe that the accuracy requirement has been fulfilled to 

a sufficient degree. 

 

Response delay 

 We define the response delay as the time between a user's action and the 

instant when it takes effect. It depends on the size of the buffer and its level of 

occupation in the moment of the storage of the output signal. The size is automatically 

established by the class responsible for the playback based on the sample rate, the 

number of channels and the bits per sample of the wave file. Specifically, the more 

samples we need to represent a certain time interval of sound the larger the buffer 

becomes. 

 We obtain the longest response delay when the buffer is full. In this case, the 

application has to read a number of samples equal to the whole buffer until it reaches 
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the point where the manipulation starts. For a mono wave file sampled at 44100 Hz 

and with 16 bits per sample, the usual buffer size is 16384 bits, i.e., 8192 samples. In 

eq. (5.4) we calculate the response delay   for this case, which is the worst one 

considering the kind of wave files that the application accepts. 

  
                 

           
                    ⁄           (   ) 

 The response delay of the application is obviously in line with the immediacy 

requirement. Experiments have shown that a maximum delay of around      is low 

enough to consider that this requirement is completely fulfilled taking into account the 

reaction times specified in [21]. 

 

Loop execution time 

 There is a limit for the time interval between the instant we write in the buffer 

of the audio output and the next writing. This limit is the time spent playing the 

samples we have written, and we name it playback time. The playback time depends 

on the number of samples that we extract in every loop. Note that the result of eq. 

(5.4) is also the playback time when we extract a number of samples equal to the 

capture rate.  

 Basically, we need to give samples to the buffer at a faster pace than the wave 

file's sample rate parameter. This is directly related to the quality preservation 

requirement. If this simple condition is not fulfilled then the buffer is bound to 

eventually become empty. The results of an empty buffer are short but very annoying 

silences during the playback. Therefore, it is essential for the quality of the audio 

output to prevent the buffer from running out of samples. 

 The loop execution time is measured as the time necessary to complete a loop 

in the case that the buffer is able to accept the samples without blocking it. This 

execution time can vary depending on the number of manipulations we apply, but it is 

always low enough so that the buffer is never empty. 

 From Fig. 24 to Fig. 26, we can see three pairs of graphics for three different 

situations. For each situation, the first graphic shows the percentage of buffer 

occupation for every loop of the cycle and the other presents the loop’s execution 

time for every loop with a blue line, the mean of the loop’s execution time with a red 

line and the playback time with a green line. 
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 In Situation 1, we are not applying any manipulation to the spectrum and 

therefore the number of samples extracted in every loop is equal to the capture rate, 

i.e., 4096 samples; the loop’s execution time mean is equal to         ; and the 

playback time is equal to the result of eq. (5.4). The buffer is completely full the entire 

time. 

 

Fig. 25 Situation 1: no manipulation 

 

 In Situation 2, we apply a low-pass filter that has a length equal to 396 samples 

in the time domain. This means that the number of samples extracted, or the number 

of samples we write in the buffer, per loop, is equal to 3700 samples; the loop’s 

execution time mean is equal to         ; and the playback time is equal 

to         . In the buffer’s graphic, we observe a periodic shape. This shape comes 

from the difference between the number of samples we write in the buffer every loop, 

and the rate at which the samples are extracted from the buffer to be played.  

 

Fig. 26 Situation 2: applying a filter of order N = 396 
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 The application always extract samples from the buffer in blocks of 1024 

samples; therefore, if the rate at which we write the samples to the buffer is not equal 

to a multiple of 1024, the buffer gradually empties until, after an extraction, it has free 

space equal to two times this last rate and it is completely filled again.  

 Both the precision of this process and the specific shape of the buffer 

occupation graphics depend on the relation between rates and the execution time of 

the loop. Situation 1 presents a flat shape because the rates are equal and the loop’s 

execution time never comes near the playback time. Therefore, every time the 

application extracts samples from the buffer to play them, the buffer is automatically 

completely refilled.  

 

Fig. 27 Situation 3: applying filter and equalizer. Also synthesizer from around loop number 20 
onwards. 

 

 In the Fig. 26 the loop’s execution time surpasses the playback time in many 

occasions and the rates do not coincide. The result is an irregular shape with 

minimums in the buffer occupation that correspond to the instants when the loop’s 

execution time greatly surpasses the playback time. Despite these minimums, the 
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buffer is never empty. The loop’s execution time mean is          , and the playback 

time is          .  

 As we can see, even in the most demanding situation, the buffer is never 

empty. Therefore, we can assume that the quality preservation requirement is fulfilled. 

 

 

5.2 User feedback 

 

 The user evaluation was done face-to-face with a total of 5 candidates, which 

had to be music-affine. We provided them the tablet with the application containing 4 

songs, each one of them representing a different music style. 

S1. Electronic: Alive, by OVERWERK.  

S2. Hard Rock: Dream Catcher, by Witchcraft. 

S3. Hip hop: Mark, by Shahmen. 

S4. Jazz-metal fusion: Hilasterion, by Merkabah. 

 The method used to test the application is a straightforward semi-structured 

interview. We let the candidates know the purpose of the application and, while using 

it, we gradually introduce every detail until the candidates know how it works and can 

start using it on their own. The candidates listen to every song and try every 

manipulation. They can ask as many questions as they want. When they are done, we 

interview them as explained in the next section. Additionally, we let them express their 

ideas on the improvement possibilities of the application, which we can later add to 

the future work section. 

 

 

5.3 Survey questions 

 

After the test is done we ask the candidates to answer a survey in order to obtain 

valuable information for the assessment of the application. The questions included in 

this survey are related to one or more of the requirements stated in Chapter 3, so that 

we can better evaluate them. The candidates answer each question with a value 
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between 0 and 10, where 0 and 10 are the worst and the best result, respectively. In 

questions Q6 and Q12 the candidates must rate all the manipulations and all the songs 

available, respectively. 

 

Q1. Do you think that the application is intuitive and easy to control? 

Q2. Do you consider that the information obtained through the screen is 

understandable? 

Q3. Do you think that the provided manipulations allow you to use the application 

in a creative way? 

Q4. Do you consider the degree of interaction with the manipulation satisfactory? 

Q5. Do you think that the fact that two or more manipulations can coexist is useful? 

Q6. Please, taking into account the results of the three last questions, rate every 

manipulation according to your satisfaction. 

Q7. Did you feel any response delay in the application of the different 

manipulations? 

Q8. Did you feel that you could apply the manipulations where you wanted to? 

Q9. Do you think that the frequency spectrum moves according to the sound you 

hear? 

Q10. Do you think that the different manipulations allowed you to obtain an 

artistically significant result? 

Q11. How do you value the quality of the generated sound? 

Q12. Please, rate the performance of the application in every song. 

 

 Q1 is related to the requirement for intuitivity and an easy control of the 

application. Q2 contains the requirements regarding the disposition and differentiation 

of the various elements that appear on the screen. From Q3 to Q5 we evaluate the 

creativity requirements. In Q6 we ask the candidate to rate each manipulation. Q7 and 

Q8 refer to the immediacy and accuracy requirements. Q9 answers the 

synchronization requirement. Q10 and Q11 are related to the output requirements 

and, finally, Q12 tries to figure out if there is a difference in the performance of the 

application for different kinds of music. 
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5.4 Survey results  

 

In section 5.1, we discussed several technical aspects that already gave us an indication 

about the degree of fulfilment of some requirements. This section aims to finish the 

assessment of every requirement stated in Chapter 3 through the comments and 

opinions about the application that the users provided us and using the mean of the 

results of the survey as a numerical backup. 

 In every test we have noticed that it is difficult for the candidate to know how 

to start using the application. They instinctively click the buttons in the manipulation 

menu and tap the screen but not in an order that would produce a satisfactory result. 

Despite that, generally, only a short explanation about the application of the 

manipulations is necessary to see a great improvement in the performance of the 

candidates. We consider that the survey results for question one in Fig. 27, reflect a 

mean value between a first impression of helplessness in front of the application and a 

learning curve that increases rapidly. 

 

Fig. 28 Survey results: questions 1 and 2. 

 

 The results for question two are much more satisfactory, as the candidates 

define the disposition of the elements on the screen as simple and clear, and find the 

colour differentiation between manipulation and the general presentation to be 

pleasant. However, some of the candidates mention a lack of information while 

applying the synthesizer manipulation or regarding the duration and current time of 

the song. 

0

1

2

3

4

5

6

7

8

9

10

Q1 Q2

Clarity requirements' questions 



5. Evaluation 

65 
 

 The aspect which the candidates have been more critical with is the capacity 

of the application to enhance the creativity of the user. Even though some of them 

admit that with more practice probably their performance would improve, all of them 

point to a limited variety of manipulation possibilities as the cause. However, as we 

can see in Fig. 28, the candidates appreciate other concepts that can contribute to the 

creative aspect of the application, such as the interaction with a manipulation once 

applied and the possibility to combine them. Furthermore, when asked about the 

quality of each manipulation, the candidates give the filter and the equalizer a score 

between 8 and 9 points and 6 points to the synthesizer, as seen in Fig. 29.  

 

Fig. 29 Survey results: questions 3, 4 and 5. 

 

Fig. 30 Survey results: questions 6. 
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 All the candidates agree on the fact that the delay in the response of the 

application to the users actions is low enough; that the accuracy with which the user 

can apply the manipulations is satisfactory and the synchronization between the audio 

output and visualization of the frequency spectrum is very precise. One of them 

underlined the capacity of the frequency spectrum to follow fast changes in the songs 

and to distinguish between close notes. 

 

Fig. 31 Survey results: questions 7, 8 and 9. 

 

 Questions Q10 and Q11 focus on the quality of the audio output, but from 

two different points of view: the objective analysis, i.e., the absence of noises such as 

clicks specially when we apply manipulations; and the subjective analysis, i.e., if the 

application is able to produce an audio output that is artistically interesting or 

significant.  

 In Fig. 31, we observe a big difference between the assessment of the quality 

from one point of view and the other. As we said before, the candidates complain 

about the creative possibilities of the application, i.e., they opine that the application’s 

capacity to create an artistically interesting output is improvable. On the contrary, the 

objective assessment of the quality is very satisfactory. 

 In the last question of the survey, we ask the candidates to rate which songs 

are more suitable to use the application with. The results in Fig. 32 are quite balanced 

with the electronic music in the first place. 
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Fig. 32 Survey results: questions 10 and 11. 

 

 

Fig. 33 Survey results: question 12. 

 

 Fig. 33 is the last graphic of this section and shows the average value of the 

results of the questions related to the same group of requirements. We use it to derive 

some general conclusions about the evaluation done in this section. Additionally, in 

Table 4, we present a summary of the fulfilment of each requirement. 

 We consider that we have achieved remarkable results concerning the 

technical performance of the application. The aspects described in Section 5.1 and the 

assessment of the candidates of all the precision requirements and the quality 

preservation requirement back this appreciation up. 
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 However, we realize that there is still a great margin for improvement 

regarding the creative part of the application in at least two different ways: adding 

new manipulations and deepening the study of those already implemented. For 

instance, if we have included only a very basic version of a synthesizer, it is partly 

because of a need for simplification, as each of the manipulations included in the 

application could become the main subject of a different thesis. 

 Regarding the clarity requirements we believe that the results obtained are 

acceptable even though we should improve the way the application communicates 

with the user in order to make it more intuitive. Additionally, and thinking about the 

future, we should probably shift our focus from buttons to a more innovative way to 

apply the manipulations such as more complex gestures. 

 

Fig. 34 Survey results: requirements average. 

 

Requirement Fulfilment 

Accuracy Accomplished 

Immediacy Accomplished 

Synchronization Accomplished 

Meaningful modifications Unaccomplished 

Quality preservation Accomplished 

Variety of modifications Unaccomplished 

Interactive modifications Partially accomplished 

Coexistence of modifications Accomplished 

Disposition of elements Accomplished 

Differentiation of elements Accomplished 

Control Partially accomplished 

 

Table 4 Summary of the fulfilment of each requirement. 
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6 
Summary and Conclusions 

 

This Thesis has been developed in compliance with the requirements state by 

Technische Universität Wien (TU Wien) and Universitat Politècnica de Catalunya (UPC). 

We aim to take advantage of the growth of both the electronic music popularity and 

the market involving devices such as tablets or smartphones to create a prototype that 

sets the groundwork to mix these two rising phenomena. The application developed 

allows us to modify a sound file in real-time through the manipulation of its frequency 

spectrum on a mobile device. 

 We have established a list of requirements that the application must fulfil 

considering the users expectations. These requirements are divided in four categories: 

the precision requirements that are related to the accuracy and immediacy in the 

application of the manipulations and also to the synchronization of the audio output 

and the spectrum visualization; the output requirements, which compel the application 

to produce an artistically meaningful output that maintains the quality of the original 

wave file; the creativity requirements that include the necessity for a variety of 

manipulations and the possibility to interact with and combine them; and the clarity 

requirements, which demand the application to be intuitive and easy to control, and to 

have a clear appearance. Finally, we have stated a priority value to every requirement 

that, basically, indicates the importance of their fulfilment. 

 Afterwards, we have introduced the general design of the application. We 

define five general stages that have their own main tasks to develop. The stages are: 

the initialization stage, where we set the layout of the activity, create the byte stream 

that connects the wave file with the application, retrieve important parameters for the 

playback, initialize all the necessary objects and start both the playback and the thread 

that forms the core of the application; the data acquisition stage that extracts a part of 



Interactive Spectral Manipulation of Music on Mobile Devices in Real-Time 

70 
 

the data inside the wave file and prepares it to become the signal that is later 

transformed to the frequency domain; the spectrum manipulation stage, which 

transforms and inverse-transforms this signal using the fast Fourier transform and 

manipulate its spectrum in between; the spectrum management stage that computes 

the magnitude of the spectrum and prepares it for visualization; and the playback and 

visualization stage, which manages and synchronizes both the audio output and the 

spectrum visualization. Eventually, we have specified which requirements are fulfilled 

in every stage. 

 This design prototype has served as an introduction for the further 

explanation of the entire contents of the application’s main activity: the Cycle activity. 

We have split the description into five sections, one for each stage, and detailed every 

step. Additionally, we have provided flow graphs of the stages that visually summarize 

their content and help to understand the chain of processes that the application 

follows. 

 We used two methods to evaluate the project: firstly, we have studied and 

assessed some technical aspects connected to specific requirements using existing 

references, such as the human response time or the ear frequency resolution, when 

needed. Secondly, we have asked music-affine test users to test the application and, 

afterwards, to answer a survey, with questions related to the requirements, and give 

us ideas for further development. 

 The results of the evaluation of the application are, in general, satisfactory. On 

one hand we must emphasize the amply accomplishment of the first challenge stated 

in Section 1.3 that was related to the technical performance of the application. On the 

other hand we must admit that there is still a lot of work to do in the aspects related to 

the creativity and the intuitivity of the application. Nevertheless, we consider that the 

work done sets a solid groundwork for future development. We identify four main 

improvement paths for the application: 

1. Playback control. 

 

2. Formats. 

 

3. Manipulations. 

 

4. Spectrum’s visualization. 

 Right now we can freely navigate through the song and find the spots we may 

want to apply some modifications to or just hear again. Despite that, the precision to 

find the right place, especially for long songs, is very low. In this sense we should let 
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the user know the position in time of the song. Additionally, we should add a way for 

the user to pause and resume the song at will. 

 One of the most important improvements that we can think of is to increase 

the variety of files that the application can play. We believe that the application should 

be able to play all kinds of wave files regardless of the bits per sample or channels they 

use, and also other formats of sound files such as mp3, etc. 

 A revision and improvement of the existing manipulations and the addition of 

new ones is essential to keep this project alive. For instance, regarding the synthesizer, 

a precise study on how to create sounds could be made in order to make them more 

complex and appealing. It could also be a good idea to invest time on the improvement 

of the programming of its application through the screen to make it more similar to an 

actual instrument. We could add more possibilities in the definition of the parameters 

of a filter; extend the bank of filters of the equalizer and their range of amplitudes; 

reconsider several aspects of the modulation manipulation such as its utility or 

application method, etc. 

 Eventually, even though we think that the current visualization of the 

spectrum is acceptable, there are possibilities to improve it such as the use of 

overlapping windows in the extraction of the data. This would result in the addition of 

intermediate frequency spectrums that would make its movement smoother. In a 

more artistic sense, we could get rid of the straight lines that appear in the low 

frequencies and, somehow, try to make the visualization more colourful. 

 If we can keep this project alive and in constant development, it surely will 

end up being an appealing product for those that enjoy the mixture of music and 

technology. 
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A 
Flow Graphs of the Stages 

 

In this appendix, we present four flow graphs corresponding to stage one, stage two, 

stage three and four, and stage five. With them, we aim to complement, in a visual 

way, the explanations given in Chapters 3 and 4 about these stages, and to clarify 

which is the path that the application follows during its execution. 
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Stage 1: initialization 

 

Fig. 35 Initialization stage’s flow graph. 
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Stage 2: data acquisition 

 

 

Fig. 36 Data acquisition stage’s flow graph 
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Stage 3 and 4: spectrum manipulation and spectrum management 

 

 

Fig. 37 Spectrum manipulation and spectrum management stages’ flow graph. 
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Stage 5: playback and visualization 

 

 

Fig. 38 Playback and visualization stage’s flow graph 
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B 
Manipulations Manual 

 

In this annex, we summarize the sequence of actions that the user has to take to apply 

the different manipulations, interact with them and cancel them in a way similar to 

that of a manual. 
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B.1 Application 

 

Synthesizer 

I. Press the manipulation menu button “SYNTH” to set its state to active-unlocked 

“SYNTH: U”. 

 

Filter 

I. Press the manipulation menu button “FILTER” to set its state to active-unlocked 

“FILTER: U”. 

 

II. For a low/high-pass filter tap the screen once. 

 

a. Tap or drag your finger to the desired frequency to fix the pass 

frequency. 

b. Tap or drag your finger again to the desired frequency to fix the 

attenuation frequency. 

c. If the pass frequency is lower than the attenuation frequency we obtain 

a low-pass filter. Otherwise, we obtain a high-pass filter. 

 

III. For a band-pass filter drag a finger to the desired frequency to fix the central 

frequency. 

 

a. Tap or drag your finger to the desired frequency to fix the pass 

frequency. It must be higher than the central frequency.  

b. Tap or drag your finger again to the desired frequency to fix the 

attenuation frequency. It must be higher than the pass frequency. 

c. If the conditions about the frequency values are not met, the filter does 

not appear and we have to start from I. 

 

Equalizer 

I. Press the manipulation menu button “EQUAL” to set its state to active-

unlocked “EQUAL: U”. 

 

II. Tap the screen for the equalizing bars to appear. 
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B.2 Interaction 

 

Synthesizer 

I. Tap with one finger to produce a note and its subsequent five harmonics. 

 

II. Drag your finger horizontally to change the note and its harmonics. 

 

III. Drag your finger vertically to change the note’s general volume 

 

IV. Place one more finger to modify the amplitude of the first harmonic. 

Subsequent fingers modify subsequent harmonics. This way we can shape our 

waveform. 

 

Filter 

I. For low/high-pass filters: 

 

a. Tap or drag your finger to the desired frequency to fix the pass 

frequency. 

b. Tap or drag your finger again to the desired frequency to fix the 

attenuation frequency. 

c. If the pass frequency is lower than the attenuation frequency we obtain 

a low-pass filter. Otherwise, we obtain a high-pass filter. 

 

II. For band-pass filters: 

 

a. Tap or drag your finger to the desired frequency to fix the central 

frequency. 

b. Tap or drag your finger to the desired frequency to fix the pass 

frequency. It must be higher than the central frequency. 

c. Tap or drag your finger to the desired frequency to the attenuation 

frequency. It must be higher than the pass frequency. 

d. If the conditions about the frequency values are not met, the filter 

disappears and we have to apply it again. 

 

III. Press the manipulation menu button “FILTER: U” to set its state to active-

locked “FILTER: L”. Now we can no longer interact with the filter. It keeps taking 

effect. Another click sets it again to the active-unlocked state “FILTER: U”. 



Interactive Spectral Manipulation of Music on Mobile Devices in Real-Time 

80 
 

 

Equalizer 

I. Tap the screen to change the amplitude of the filters of the equalizer. 

 

II. Press the manipulation menu button “EQUAL: U” to set its state to active-

locked “EQUAL: L”. Now we can no longer interact with the equalizer. The bars 

disappear but the equalizer keeps taking effect. Another click sets it again to 

the active-unlocked state “FILTER: U” and with one tap the bars appear again. 

 

 

B.3 Cancellation 

 

Synthesizer 

I. Press the manipulation menu button “SYNTH: U” to set its state to inactive 

“SYNTH”. 

 

Filter 

I. Press the manipulation menu button “RESET” while the filter is in the active-

unlocked state “FILTER: U” and tap the screen. 

 

Equalizer 

I. Press the manipulation menu button “RESET” while the equalizer is in the 

active-unlocked state “EQUAL: U” and tap the screen. 
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