Interactive Media Systems, TU Wien

Development of a High-Level Simulation Approach and Its Application to Multicore Video Decoding

By Florian Seitner, Michael Bleyer, Margrit Gelautz, and Ralf Beuschel


In this paper, we introduce a high-level simulation methodology for the modeling of multicore video processing architectures. This method allows design space explorations of parallel video processing applications (VPAs). It is used to test the performance of running a VPA on arbitrary virtual hardware and software configurations. The method represents an alternative to performing a "complete" decoder implementation on a field-programmable gate array or an application-specific integrated circuit. The use of our method, therefore, yields the advantage of being considerably more time, labor, and cost efficient. As an application, we use our method for designing a parallel H.264 decoder targeting 720 p 25 resolution at bit-rates up to 50 Mb/s. Starting from a single-core decoder implementation, we use our simulator for estimating the performance gain when using a multicore architecture. We then detect the major performance bottlenecks in this multicore system and perform additional decoder splittings accordingly until we reach the targeted requirements. The use of functional splitting (i.e., pipelining) and data-parallel processing is demonstrated. The final H.264 decoder architecture is capable of fulfilling our performance requirements.


F. Seitner, M. Bleyer, M. Gelautz, R. Beuschel: "Development of a High-Level Simulation Approach and Its Application to Multicore Video Decoding"; IEEE Transactions on Circuits and Systems for Video Technology, 19 (2009), 11; 1667 - 1679.


Click into the text area and press Ctrl+A/Ctrl+C or ⌘+A/⌘+C to copy the BibTeX into your clipboard… or download the BibTeX.